以一张图片作为开始吧: 这里的输入数据是大小为(8×8)的彩色图片,其中每一个都称之为一个feature map,这里共有3个。所以如果是灰度图,则只有一个feature map。 进行卷积操作时,需要指定卷积核的大小,图中卷积核的大小为3,多出来的一维3不需要在代码中指定,它会 ...
每个卷积核具有长 宽 深三个维度。 卷积核的长 宽都是人为指定的,长X宽也被称为卷积核的尺寸,常用的尺寸为 X , X 等 卷积核的深度与当前图像的深度 feather map的张数 相同,所以指定卷积核时,只需指定其长和宽两个参数。 例如,在原始图像层 输入层 ,如果图像是灰度图像,其feather map数量为 ,则卷积核的深度也就是 如果图像是grb图像,其feather map数量为 ,则 ...
2022-02-05 16:35 0 1118 推荐指数:
以一张图片作为开始吧: 这里的输入数据是大小为(8×8)的彩色图片,其中每一个都称之为一个feature map,这里共有3个。所以如果是灰度图,则只有一个feature map。 进行卷积操作时,需要指定卷积核的大小,图中卷积核的大小为3,多出来的一维3不需要在代码中指定,它会 ...
1、池化层的作用 在卷积神经网络中,卷积层之间往往会加上一个池化层。池化层可以非常有效地缩小参数矩阵的尺寸,从而减少最后全连层中的参数数量。使用池化层即可以加快计算速度也有防止过拟合的作用。 2、为什么max pooling要更常用? 通常来讲,max-pooling的效果更好 ...
1.原理 对于1*1的卷积核来说,实际上就是实现不同通道数据之间的计算,由于卷积窗口为1*1,那么他不会对同一通道上相邻的数据进行改变,而是将不同通道之间的数据进行相加. 输入和输出具有相同的高和宽。输出中的每个元素来自输入中在高和宽上相同位置的元素在不同通道之间的按权重累加 ...
滤波器的大小选择 大部分卷积神经网络都会采用逐层递增(1⇒ 3 ⇒ 5 ⇒ 7)的方式。 每经过一次池化层,卷积层过滤器的深度都会乘以 2; 卷积神经网络中卷积核越小越好吗? 多个小的卷积核叠加使用要远比一个大的卷积核单独使用效果要好的多,在连通性不变的情况下,大大降低了参数 ...
卷积是图像处理中一个操作,是kernel在图像的每个像素上的操作。Kernel本质上一个固定大小的矩阵数组,其中心点称为锚点(anchor point)。把kernel放到像素数组之上,求锚点周围覆盖的像素乘积之和(包括锚点),用来替换锚点覆盖下像素点值称为卷积处理。数学表达 ...
转自: https://www.cnblogs.com/hellcat/p/9687624.html 目录 一、空洞卷积的提出 二、空洞卷积原理 三、空洞卷积问题 感受野跳跃 小尺度物体检测 四、网络设计研究 ...
第一次接触的时候,已经理解了,但是过了一段时间,就有点忘了下面这两篇文章,不错!可以帮助回忆与理解。 https://blog.csdn.net/zyqdragon/article/details/ ...
在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小。 原始输入为5*5大小,使用一个5*5大小的核,处理它,得到的结果为1*1大小, 卷积核参数为25。 原始输入是5*5大小,使用两次3*3大小的核,处理它,得到 ...