线性代数导论 - #6 向量空间、列空间、Rn与子空间 让我们回想一下#1的内容,当我们在用向量的新视角看待线性方程组时,曾经提到以“向量的图像”作为代数学与几何学桥梁的想法。 而现在,让我们沿着这个想法深入探索下去,将其作为开启线性代数核心学习的钥匙。 引入新概念:向量空间 ...
由于作者时间缘故,将只挑选一些比较重要的部分讲述。 注意,这一部分和 Ax b与Ax x 的 n乘n 方阵情况是不同的,后两者一种是线性系统,一种是特征值。 线性代数 向量空间和子空间 Ax b m乘n 向量空间 向量空间 R n 包括所有有n个实分量的列向量。 M 所有 x 实矩阵 ,F 所有实值函数 以及Z 单个零向量 都是向量空间。 一个向量空间中的子空间由所有 v和w 的线性组合 cv ...
2021-11-15 22:35 0 140 推荐指数:
线性代数导论 - #6 向量空间、列空间、Rn与子空间 让我们回想一下#1的内容,当我们在用向量的新视角看待线性方程组时,曾经提到以“向量的图像”作为代数学与几何学桥梁的想法。 而现在,让我们沿着这个想法深入探索下去,将其作为开启线性代数核心学习的钥匙。 引入新概念:向量空间 ...
向量空间(Vector Space) 用表示,表示n为向量空间 向量空间的性质: 向量空间内的向量进行相加相减,乘以或者除以一个标量,或者向量之间的线性组合得到的新向量还是位于该空间中。 非向量空间举例,如二维向量的第一象限空间,取其空间内任意一个向量,如,对该向量进行乘以-1,得到 ...
正交向量 正交(orthogonal):垂直 正交子空间 子空间S和子空间T正交:S中每个向量与T中每个向量正交 矩阵A的行空间和A的零空间正交 ...
正交向量 正交是垂直的另一种说法,她意味着在 \(n\) 维空间中,这些向量的夹角是90度。 两个向量正交的条件: \[x^Ty=0 \] \(x、y\) 表示列向量,\(x^T\) 表示行向量,这个式子就是矩阵乘法中的行点乘列。如果结果为0,那么就说明两个向量正交。 证明 ...
在本系列中,我的个人见解将使用斜体标注。每篇文章的最后,我将选择摘录一些例题。由于文章是我独自整理的,缺乏审阅,难免出现错误,如有发现欢迎在评论区中指正。 目录 Part 1:子空间 Part 2:有限维向量空间 Part 3:线性无关与线性相关 例题 ...
置换矩阵 置换矩阵(permutation)是行进行重新排列的单位矩阵,矩阵A左乘置换矩阵可以互换相应的行。 对n阶单位阵, 有n!个置换矩阵 性质: 转置矩阵 转置矩阵 ...
空间: 在上一次https://www.cnblogs.com/webor2006/p/14306046.html学习了诸多在线性代数中非常核心的概念(线性组合、线性相关、线性无关、生成空间,空间的基...),这次则继续学习重要的核心概念(空间、维度、四大子空间)。在之前的学习中用 ...
1. 投影 向量 $ b = (2, 3, 4)$ 在 \(z\) 轴上和在 \(xy\) 平面上的投影是什么,哪个矩阵能产生到一条线上和到一个平面的投影? 当 \(b\) 被投影到 \(z\) 轴上时,它的投影 \(p\) 就是 \(b\) 沿着那条线的部分。当 \(b\) 被投影到一个平面 ...