pytorch单机多卡训练 训练 只需要在model定义处增加下面一行: 载入模型 如果是多GPU载入,没有问题 如果训练时是多GPU,但是测试时是单GPU,会出现报错 解决办法 ...
前一篇博客利用Pytorch手动实现了LeNet ,因为在训练的时候,机器上的两张卡只用到了一张,所以就想怎么同时利用起两张显卡来训练我们的网络,当然LeNet这种层数比较低而且用到的数据集比较少的神经网络是没有必要两张卡来训练的,这里只是研究怎么调用两张卡。 现有方法 在网络上查找了多卡训练的方法,总结起来就是三种: nn.DataParallel pytorch encoding distri ...
2021-05-25 17:47 0 6627 推荐指数:
pytorch单机多卡训练 训练 只需要在model定义处增加下面一行: 载入模型 如果是多GPU载入,没有问题 如果训练时是多GPU,但是测试时是单GPU,会出现报错 解决办法 ...
需求 对基于pytorch的深度学习模型进行多卡训练以加速训练过程 由于显卡版本过于老旧,安装配置NCCL工程量过于庞大,希望使用简单的pytorch代码实现单机多卡训练,不考虑多机多卡的显卡通信 训练完成后保存的checkpoint需要能够在任何设备上进行加载、推理 实现 ...
一、启动训练的命令 python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE train.py 其中torch.distributed.launch表示以分布式的方式启动训练 ...
1. 导入库: 2. 进程初始化: 添加必要参数 local_rank:系统自动赋予的进程编号,可以利用该编号控制打印输出以及设置device world_size:所创建的进程数, ...
本文将记录如何使用单机多卡GPU的方式进行训练,主要是采用DP模式(DDP模式一般用于多机多卡训练)。 1、DP模式基本原理 DP模型进行单机多卡训练基本步骤如下: (1)将模型复制到各个GPU中,并将一个batch的数据划分成mini_batch并分发给给个GPU ...
一. torch.nn.DataParallel ? pytorch单机多卡最简单的实现方法就是使用nn.DataParallel类,其几乎仅使用一行代码net = torch.nn.DataParallel(net)就可让模型同时在多张GPU上训练,它大致的工作过程如下图所示: 在每一个 ...
https://www.jianshu.com/p/fb132fdbde3b ...
1.仓库地址 https://github.com/meijieru/crnn.pytorch 原版用lua实现的:https://github.com/bgshih/crnn 需要用到的warp_ctc_pytorch: https://github.com/SeanNaren ...