基于BERT的中文命名实体识别任务(BERT-BiLSTM-CRF-NER) TensorFlow环境 官方requirements.txt要求环境版本 本人实现代码TensorFlow环境版本 数据集地址 BERT-BiLSTM-CRF-NER源码地址 ...
引入 Bert bilistm crf进行命名体识别其实就是在bilstm crf的基础上引入bert词向量,pytorch官网给出了的bilstm crf的模板代码,但是pytorch官方的bilstm crf的代码存在两个问题: . 代码的复杂度过高,可以利用pytorch的广播计算方式,将其复杂度降低。 .官方代码的batch size仅仅为 ,实际运用时需要将batch size调大。 对 ...
2021-01-02 18:21 0 1215 推荐指数:
基于BERT的中文命名实体识别任务(BERT-BiLSTM-CRF-NER) TensorFlow环境 官方requirements.txt要求环境版本 本人实现代码TensorFlow环境版本 数据集地址 BERT-BiLSTM-CRF-NER源码地址 ...
这个系列我们来聊聊序列标注中的中文实体识别问题,第一章让我们从当前比较通用的基准模型Bert+Bilstm+CRF说起,看看这个模型已经解决了哪些问题还有哪些问题待解决。以下模型实现和评估脚本,详见 Github-DSXiangLi/ChineseNER。Repo里上传了在MSRA上训练 ...
本篇文章假设你已有lstm和crf的基础。 BiLSTM+softmax lstm也可以做序列标注问题。如下图所示: 双向lstm后接一个softmax层,输出各个label的概率。那为何还要加一个crf层呢? 我的理解是softmax层的输出是相互独立的,即虽然BiLSTM学习到了 ...
源码: https://github.com/Determined22/zh-NER-TF 命名实体识别(Named Entity Recognition) 命名实体识别(Named Entity Recognition, NER)是 NLP 里的一项很基础的任务,就是指从文本中 ...
接下来我们继续对官方基于bert的模型进行扩展,之前的可参考: 基于bert命名实体识别(一)数据处理 命名实体识别数据预处理 命名实体识别之创建训练数据 命名实体识别之使用tensorflow的bert模型进行微调 命名实体识别之动态融合不同bert层的特征 ...
【2020-04-03】微信公众号已经创建好了!会第一时间收到其他文章的更新!(二维码在末尾) 虽然网上的文章对BiLSTM-CRF模型介绍的文章有很多,但是一般对CRF层的解读比较少。 于是决定,写一系列专门用来解读BiLSTM-CRF模型中的CRF层的文章。 我是用英文写的,发表 ...
利用tensorflow2自带keras搭建BiLSTM+CRF的序列标注模型,完成中文的命名实体识别任务。这里使用数据集是提前处理过的,已经转成命名实体识别需要的“BIO”标注格式。 详细代码和数据:https://github.com/huanghao128/zh-nlp-demo 模型 ...