1 softmax函数 softmax函数的定义为 $$softmax(x)=\frac{e^{x_i}}{\sum_j e^{x_j}} \tag{1}$$ softmax函数的特点有 函数值在[0-1]的范围之内 所有$softmax(x_i)$相加的总和为1 面对一个 ...
一 交叉熵和softmax 交叉熵已经包括了softmax 二 理解 两者的相同之处: nn.Xxx和nn.functional.xxx的实际功能是相同的,即nn.Conv d和nn.functional.conv d 都是进行卷积,nn.Dropout 和nn.functional.dropout都是进行dropout,。。。。。 运行效率也是近乎相同。 nn.functional.xxx是函数 ...
2020-11-23 19:38 0 371 推荐指数:
1 softmax函数 softmax函数的定义为 $$softmax(x)=\frac{e^{x_i}}{\sum_j e^{x_j}} \tag{1}$$ softmax函数的特点有 函数值在[0-1]的范围之内 所有$softmax(x_i)$相加的总和为1 面对一个 ...
What does the cross-entropy mean? Where does it come from? 交叉熵是什么意思呢?它是从哪里来的? 上一节咱们从代数分析和实际应用对交叉熵进行了介绍,这一节从概念角度介绍下它: 问题1:第一次是怎么想到交叉熵的呢? 假设我们已经知道 ...
Softmax函数与交叉熵损失函数 深度学习新手,如果错误,还请指正,谢谢 Softmax激励函数 用于生成各个结果的概率分布,其输出概率之和为1,同时取概率最高的作为结果 交叉熵损失函数(Cross Entropy Loss) softmax函数结果与真实值计算交叉熵 ...
来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中 ...
在pytorch当中,有两种方式可以实现交叉熵,而我们把softmax概率传入传入对数似然损失得到的损失函数叫做“交叉熵损失” 在pytorch当中有两种方法实现交叉熵损失: 实现方式1: 实现方式2: ...
机器学习中经常遇到这几个概念,用大白话解释一下: 一、归一化 把几个数量级不同的数据,放在一起比较(或者画在一个数轴上),比如:一条河的长度几千甚至上万km,与一个人的高度1.7m,放在一起,人的 ...
交叉熵(cross entropy):用于度量两个概率分布间的差异信息。交叉熵越小,代表这两个分布越接近。 函数表示(这是使用softmax作为激活函数的损失函数表示): (是真实值,是预测值。) 命名说明: pred=F.softmax(logits),logits是softmax ...
背景 多分类问题里(单对象单标签),一般问题的setup都是一个输入,然后对应的输出是一个vector,这个vector的长度等于总共类别的个数。输入进入到训练好的网络里,predicted class就是输出层里值最大的那个entry对应的标签。 交叉熵在多分类神经网络训练中用的最多 ...