原文:线性代数.22对角化和A的权利

对角化 上一节课我们知道了怎么求解特征值和特征向量。 假设 A 有 n 个线性无关特征向量,按列组成矩阵 S ,称其为特征向量矩阵。 我们算一下 A 乘以 S 会发生什么。 begin align AS amp A. left begin array cccc x amp x amp ... amp x n end array right amp left begin array cccc lam ...

2020-10-03 16:41 0 416 推荐指数:

查看详情

线性代数笔记23——矩阵的对角化和方幂

特征值矩阵   假设A有n个线性无关的特征向量x1,x2……xn,这些特征向量按列组成矩阵S,S称为特征向量矩阵。来看一下A乘以S会得到什么:   最终得到了S和一个以特征值为对角线的对角矩阵的乘积,这个对角矩阵就是特征值矩阵,用Λ表示:   没有人关心线性相关的特征向量,上式有意义 ...

Sat Dec 29 23:07:00 CST 2018 0 1638
线性代数应该这样学9:上三角矩阵、对角矩阵

在本系列中,我的个人见解将使用斜体标注。由于时间关系,移除了例题部分,可参考答案链接,如有疑问,可在评论区处留言。由于文章是我独自整理的,缺乏审阅,难免出现错误,如有发现欢迎在评论区中指正。 目录 Part 1:上三角矩阵 Part 2:对角矩阵 Part ...

Wed Feb 17 03:30:00 CST 2021 0 823
线性代数及其应用(一)

线性方程组: 包含变量x1,x2,……,xn的线性方程是形如           a1x2 +a2x2+...+a3x3 = b 的方程,其中b与系数a1 ,a2 ,…… ,an是实数或者复数,通常是已知数,下标n可以是任意正整数。 线性方程组的解有下列三种情况: ①无解 ...

Tue Jan 12 00:03:00 CST 2021 0 596
线性代数总结

一、行列式性质 二、行列式的运算 1、 2、 3、 4、代数余子式 5、 6、多个A或M相加减 7、 三、矩阵运算(加减、相乘) 1、矩阵加减 2、矩阵相乘 3、矩阵取绝对值 四、转置、秩 ...

Sat Oct 16 18:56:00 CST 2021 0 179
线性代数基础

目录 线性方程组 概述 初等行变换与高斯消元 齐次方程组 有限维向量空间 n维向量 向量组 线性相关与无关 向量组的秩 矩阵 矩阵的秩 矩阵的相抵标准型 ...

Sat Apr 18 22:00:00 CST 2020 0 3802
线性代数

https://www.bilibili.com/video/av22727915/?p=1 线性代数这门课主要描述这样的问题, 如何解多元一次方程组,即一个线性方程式的系统 解这个系统,就是要回答下面的问题,有没有解,多少解,怎么求解 为什么要研究一次线性 ...

Wed Jul 25 23:50:00 CST 2018 0 1610
线性代数入门

前言 某次模拟赛被矩阵虐哭,补一波线代 这篇博客偏入门,概念较多,算法相关较少 大力膜拜\(3B1B\)的线性代数的本质系列 (参考资料来源,或者干脆叫观影总结吧……) 完全就是观影总结\(qwq\) 记号:不作特殊说明,本文中的大写字母均表示某个矩阵,小写字母均表示某个向量 顺便 ...

Sat Dec 28 01:16:00 CST 2019 9 1131
线性代数

线性方程组 我们将要学的:A system of linear equations (多元一次聯立方程式) 由于本课程中m,n都很大,因此要采用与高中解方程组不同的视角,如: 是否有解 是否有唯一解 怎样找到解 行列式 ...

Tue May 01 18:27:00 CST 2018 1 1008
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM