将函数f(x)=lnx展开成x-1的幂级数 可以简单推导一下:1/(1-x) = 1+x+x^2+...+x^n+...integral from 0 to x,ln(1-x) = x+x^2/2+...+x^n/n+...lnx = ln(1-(1-x)) = (1-x)+(1-x ...
将函数f(x)=lnx展开成x-1的幂级数 可以简单推导一下:1/(1-x) = 1+x+x^2+...+x^n+...integral from 0 to x,ln(1-x) = x+x^2/2+...+x^n/n+...lnx = ln(1-(1-x)) = (1-x)+(1-x ...
含有阶乘的幂级数和 通常bai都是指数函数,三角du函数等的组合e^zhix=Σ x^n/n!sinx=Σ (-1)^n*x^(2n+1)/(2n+1)!cosx=Σ (-1)^n*x^(2n)/(2n)!只要把和函数凑成这样类似形式的函数就可以了 ...
...
答案是1/(1+x²) 这一步求出了y=arctanx的导数,要求其幂级数可以观察1/(1+x²)可以 ...
已知函数ex可以展开为幂级数1+x+x2/2!+x3/3!+⋯+xk/k!+⋯。现给定一个实数x,要求利用此幂级数部分和求ex的近似值,求和一直继续到最后一项的绝对值小于0.00001。 输入格式: 输入在一行中给出一个实数x∈[0,5]。 输出格式: 在一行 ...
已知函数ex可以展开为幂级数1+x+x2/2!+x3/3!+⋯+xk/k!+⋯。。现给定一个实数x,要求利用此幂级数部分和求ex的近似值,求和一直继续到最后一项的绝对值小于0.00001。 输入格式:输入在一行中给出一个实数x∈[0,5]。 输出格式:在一行中输出 ...
7-58 求幂级数展开的部分和 (20分) 已知函数ex可以展开为幂级数1+x+x2/2!+x3/3!+⋯+xk/k!+⋯。现给定一个实数x,要求利用此幂级数部分和求ex的近似值,求和 ...
首先回顾一下泰勒展开式: 设函数 \(f(x)\) 在 \(x_0\) 的某个邻域 \(O(x_0, r)\) 中能展开幂级数, 则它的幂级数展开就是 \(f(x)\) 在 \(x_0\) 的 \(Taylor\) 级数: \[f(x) = \sum_{0}^{\infty ...