pytorch——nn.Module 构建深度学习模型的话,用autograd太抽象、底层、代码量大实现麻烦,提供了nn.Module比较方便。nn.Module代表某一次或者某几层的nn。一般是基础nn.Module,写自己的nn/nn的某层 一、Module基本知识介绍 ...
在PyTorch中nn.Module类是用于定义网络中前向结构的父类,当要定义自己的网络结构时就要继承这个类。现有的那些类式接口 如nn.Linear nn.BatchNorm d nn.Conv d等 也是继承这个类的,nn.Module类可以嵌套若干nn.Module的对象,来形成网络结构的嵌套组合,下面记录nn.Module的功能。 .继承nn.Module类的模块 使用其初始化函数创建对象 ...
2020-07-16 19:47 0 959 推荐指数:
pytorch——nn.Module 构建深度学习模型的话,用autograd太抽象、底层、代码量大实现麻烦,提供了nn.Module比较方便。nn.Module代表某一次或者某几层的nn。一般是基础nn.Module,写自己的nn/nn的某层 一、Module基本知识介绍 ...
测试代码: import torch.nn as nnclass Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(10, 20 ...
nn.Module() 目录 nn.Module() nn.Module() 1、核心 2、查看 3、设置 4、注册 5、转换 6、加载 如何将模型 ...
大部分nn中的层class都有nn.function对应,其区别是: nn.Module实现的layer是由class Layer(nn.Module)定义的特殊类,会自动提取可学习参数nn.Parameter nn.functional中的函数更像是纯函数,由def function ...
register_parameter nn.Parameters 与 register_parameter 都会向 _parameters写入参数,但是后者可以支持字符串命名。 从源码中可以看到,nn.Parameters为Module添加属性的方式也是通过register_parameter ...
torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己定义的网络,需要注意以下几点: 1)需要继承nn.Module类,并实现forward方法 ...
参考:pytorch教程之nn.Module类详解——使用Module类来自定义模型 pytorch中对于一般的序列模型,直接使用torch.nn.Sequential类及可以实现,这点类似于keras,但是更多的时候面对复杂的模型,比如:多输入多输出、多分支模型、跨层连接模型、带有自定义层 ...
我学习pytorch框架不是从框架开始,从代码中看不懂的pytorch代码开始的 可能由于是小白的原因,个人不喜欢一些一下子粘贴老多行代码的博主或者一些弄了一堆概念,导致我更迷惑还增加了畏惧的情绪(个人感觉哈),我觉得好像好多人都是喜欢给说的明明白白的,难听点就是嚼碎了喂我们。这样也行 ...