目录 序言 向量究竟是什么? 线性组合、张成的空间与基 矩阵与线性变换的关系 行列式 逆矩阵、列空间、零空间 点积与对偶性 叉积 基变换 特征向量与特征值 抽象向量空间 通过直观的动画演示,理解线性代数的大部分核心概念 ...
.什么是向量 我们分别从数学专业 计算机专业 数学专业的眼中看着三种形式的向量表示: 向量的三种形式 线性代数想表达的就是 上述三种形式是相互等价的,可以相互转化 , 为数学分析 可视化提供了一种方式,以一种清晰明了的方式展示数据,更加形象 直观的了解数据的形式及本质。 同时也为计算机提供了能够处理的数据方式并进行运算。 . 向量的三种形式 A.箭头 物理 利用箭头表示的向量涵盖有两层直观的含义 ...
2020-05-12 18:44 0 872 推荐指数:
目录 序言 向量究竟是什么? 线性组合、张成的空间与基 矩阵与线性变换的关系 行列式 逆矩阵、列空间、零空间 点积与对偶性 叉积 基变换 特征向量与特征值 抽象向量空间 通过直观的动画演示,理解线性代数的大部分核心概念 ...
向量是线性代数最基础、最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么? 向量之所以让人迷糊,是因为我们在物理、数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是而非。 1. 物理学中的向量 物理学中的向量:空间中的箭头,由长度和它所指的方向决定 ...
原文链接:https://www.cnblogs.com/TenosDoIt/p/3214096.html 从大学开始接触矩阵论和线性代数,记了很多公式,但是总感觉徘徊在线性代数的门外没有进去,感觉并没有接触到它的核心概念,不巧看到了这篇博客,顿时醍醐灌顶,豁然开朗,记录与此: 比如说 ...
本文主要内容为《线性代数的本质》学习笔记,内容和图片主要参考 学习视频 ,感谢3Blue1Brown对于本视频翻译的辛苦付出。有的时候跟不上字幕,所有在这里有些内容参考了此篇博客。在这里我主要记录下自己觉得重要的内容以及一些相关的想法,希望能与大家多多交流~ 本节内容对应视频的“00. 序言 ...
特征值和特征向量一直是我最疑惑的一个地方,虽然知道如何计算,但是一直不懂他所代表的意义,今天就来揭开他神秘的面纱! 特征值和特征向量 我们先来看一个线性变换的矩阵,并且考虑他所张成的空间,也就是过原点和向量尖端的直线: 在这个变换中,绝大部分的向量都已经离开了它们张成的空间,但是某些特殊 ...
【线性代数的本质】线性空间、基向量的几何解释_哔哩哔哩_bilibili 注: 1.学习新事物的时候,要和之前熟悉的事物进行类比理解。 注: 1.当然,向量的坐标和点的坐标是一样的,向量的坐标就相当于是点的坐标了。 注: 1.二维空间中的所有 ...
在网上看到的一篇文章,看了以后感触颇深。 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。 比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个古怪概念,然后用逆序数给出行列式的一个 极不直观的定义 ...
最近看了B站大神的视频,讲解线性代数一些概念的本质,其中P10讲到了点积,老师讲了点积的本质,当时由于水平不行不理解,重看了几遍,又自己捋了一下,并补充了一些证明,才弄明白。 在此整理备忘,没啥数学功底,表达起来相当困难,只能做到自己能看懂的程度,仅供自己以后回忆用。 首先,我觉得有一点 ...