3.2 向量组的极大无关组及秩 3.2.1 向量组的极大无关组 向量组的秩:在二维、三维几何空间中,坐标系是不唯一的,但任一坐标系中所含向量的个数是一个不变的量,向量组的秩正是这一几何事实的一般化。 3.2.2 向量组的秩 3.2.3 向量组的秩和极大无关组 ...
最大无关组: 设有向量组T,如果 :在T中有,r 个向量 a , a , ..., a r 线性无关 :T中任意r 个 如果有的话 向量线性相关。 则称部分组a ,a ,...a r 是T的最大无关组。 矩阵的秩R A lt min m, n : 矩阵的行秩和列秩,统称为矩阵的秩。 行秩和列秩相等。列秩:列向量组的值 行秩:行向量的秩 ...
2020-05-01 15:20 0 1651 推荐指数:
3.2 向量组的极大无关组及秩 3.2.1 向量组的极大无关组 向量组的秩:在二维、三维几何空间中,坐标系是不唯一的,但任一坐标系中所含向量的个数是一个不变的量,向量组的秩正是这一几何事实的一般化。 3.2.2 向量组的秩 3.2.3 向量组的秩和极大无关组 ...
定义 1: 向量组\(\alpha_1, \alpha_2, \dots ,\alpha_s\)的一个部分组满足两个条件: (1)这个部分组线性无关 (2)从向量组的其余向量(如果存在的话)中任取一个向量添进来,得到的新的部分组都线性相关 称为这个向量组的一个极大线性无关组。 设向量组 ...
向量组和向量组的线性表示 如果向量组\(B:\beta_1,\beta_2...\beta_q\ ...
小时候老师总告诉我们「要有n个方程才能确定地解出n个未知数」——这句话其实是不严格的,如果你想确定地解出n个未知数,只有n个方程是不够的,这n方程还必须都是「有用的」才行。从这个角度,初学者可以更好地理解「矩阵的秩」。 其实,《线性代数》这门课自始自终被两条基本线索交叉贯穿 ...
数域\(K\)上的\(s \times n\)矩阵\(A\) \[\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{s1} & \cdots & a_{sn ...
矩阵的秩:对于任意矩阵,任取k行,k列,构成k阶子式,k阶子式如果是最高阶的非零子式,那么k的值就是该矩阵的秩。 ...
矩阵的秩 一、定义 二、定理 一、定义 在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。 二、定理 定理:矩阵的行秩,列秩,秩都相等。 定理:初等变换不改变矩阵的秩 ...
AX=b有唯一解,|A|≠0? 不一定,由克莱姆法则知,|A|≠0,有AX=b有唯一解 第一个问题就是,A有行列式嘛?若A不是方阵,那么A连行列式都没有,但是若A为方阵,那么上述结论是正确的 若AX=0只有零解,则AX=b有唯一解 A列满秩,但若A不是方阵,可能r(A|b)>r ...