原文:超详细讲解贝叶斯网络(Bayesian network)

贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的 和 ,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大。而且概率虽然未知,但最起码是一个确定的值。比如如果问那时的人们一个问题: 有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少 他们会想都不用想,会立马告诉你,取出白球的概率就是 ,要么取到白球,要么取不到白球,即 只能 ...

2020-04-27 15:07 0 6612 推荐指数:

查看详情

动态网络(dynamic bayesian network)

动态网络   我们已经在静态世界的上下文中发展了用于概率推理的技术,在这里每个随机变量都有一个唯一的固定取值。例如,在修理汽车时,我们总是假设在整个诊断过程中发生故障的部分一直都是有故障的(与时间无关);我们的 任务是根据已观察到的证据推断汽车的状态,而这个状态是保持不变的。但是现实世界中 ...

Fri Jun 07 02:35:00 CST 2013 2 8680
网络(Bayesian networks)

算法杂货铺——分类算法之网络(Bayesian networks) 2.1、摘要 在上一篇文章中我们讨论了朴素分类。朴素分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件 ...

Thu Jan 17 23:31:00 CST 2019 0 976
概率图模型(PGM):网(Bayesian network)初探

1. 从方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度。 1763年,民间科学家Thomas ...

Sat Oct 26 00:48:00 CST 2019 0 2344
网络

把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了网络网络(Bayesian Network),又称有向无环图模型(directed acyclic graphical model ,DAG),是一种概率图模型,根据概率图的拓扑结构,考察一组 ...

Mon Dec 10 17:12:00 CST 2018 0 11008
网络

联合概率表示两个事件共同发生的概率。A与B的联合概率表示为或者。 边缘概率(又称先验概率)是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中那些不需要的事件通过合并成它们的全概 ...

Tue Oct 01 05:07:00 CST 2019 0 363
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM