条件独立(conditional independence) 结合贝叶斯网络(Bayesian network) 概率有向图 (PRML8.2总结)


 本文会利用到上篇,博客的分解定理,需要的可以查找上篇博客

 

 

D-separation对任何用有向图表示的概率模型都成立,无论随机变量是离散还是连续,还是两者的结合。

 

 

 部分图为手写,由于本人字很丑,望见谅,只是想把PRML书的一些部分总结出来,给有需要的人看,希望能帮到一些人理解吧。

 

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM