原文:PyTorch学习笔记9--案例4,5: Pytorch LSTM 时间序列预测

时间序列预测案例一: 正弦波 PyTorch 官方给出了时间序列的预测案例: https: github.com pytorch examples tree master time sequence prediction 这是一个初学者上手的例子。它有助于学习pytorch和时间序列预测。本例中使用两个LSTMCell单元来学习从不同相位开始的一些正弦波信号。在学习了正弦波之后,网络试图预测未来的 ...

2020-04-17 09:50 0 5201 推荐指数:

查看详情

Pytorch循环神经网络LSTM时间序列预测风速

#时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的。 #时间序列模型最常用最强大的的工具就是递归神经网络 ...

Tue May 21 21:36:00 CST 2019 5 6925
LSTM:在Python中使用PyTorch使用LSTM进行时间序列预测

原文链接: https://stackabuse.com/time-series-prediction-using-lstm-with-pytorch-in-python/ 时间序列数据,顾名思义是一种随时间变化的数据类型。例如,24小时时间段内的温度,一个月内各种产品的价格,一个特定 ...

Fri May 28 01:35:00 CST 2021 0 9092
Pytorch-时间序列预测

1.问题描述 已知[k,k+n)时刻的正弦函数,预测[k+t,k+n+t)时刻的正弦曲线。因为每个时刻曲线上的点是一个值,即feature_len=1,如果给出50个时刻的点,即seq_len=50,如果只提供一条曲线供输入,即batch=1。输入的shape=[seq_len, batch ...

Wed Jul 22 05:28:00 CST 2020 1 3303
深度学习Pytorch入门实战(十四)时间序列预测

笔记摘抄 1. 问题描述 已知 [k, k+n)时刻的正弦函数,预测 [k+t, k+n+t)时刻的正弦曲线。 因为每个时刻曲线上的点是一个值,即feature_len=1 如果给出50个时刻的点,即seq_len=50 如果只提供一条曲线供输入,即batch ...

Fri Jul 24 07:17:00 CST 2020 0 760
在Python代写中使用LSTMPyTorch进行时间序列预测

原文链接:http://tecdat.cn/?p=8145 顾名思义,时间序列数据是一种随时间变化的数据类型。例如,24小时内的温度,一个月内各种产品的价格,一年中特定公司的股票价格。诸如长期短期记忆网络(LSTM)之类的高级深度学习模型能够捕获时间序列数据中的模式,因此可用于对数据的未来 ...

Tue Oct 29 18:35:00 CST 2019 0 870
Pytorch学习笔记10--时间序列分类总结

原贴地址: https://blog.csdn.net/qq_34919792/article/details/104262255 时间序列是很多数据不可缺少的特征之一,其应用很广泛,如应用在天气预测,人流趋势,金融预测等。感觉在时间序列的使用上大致可以分为两部分,一种 ...

Sun Apr 19 04:44:00 CST 2020 0 2200
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM