深度残差网络ResNet获得了2016年IEEE Conference on Computer Vision and Pattern Recognition的最佳论文奖,目前在谷歌学术的引用量已高达38295次。 深度残差收缩网络是深度残差网络的一种的改进版本,其实是深度残差网络、注意力机制 ...
本文解读了一种新的深度注意力算法,即深度残差收缩网络 Deep Residual Shrinkage Network 。从功能上讲,深度残差收缩网络是一种面向强噪声或者高度冗余数据的特征学习方法。本文首先回顾了相关基础知识,然后介绍了深度残差收缩网络的动机和具体实现,希望对大家有所帮助。 .相关基础 深度残差收缩网络主要建立在三个部分的基础之上:深度残差网络 软阈值函数和注意力机制。 . 深度残差 ...
2020-03-21 18:44 0 1353 推荐指数:
深度残差网络ResNet获得了2016年IEEE Conference on Computer Vision and Pattern Recognition的最佳论文奖,目前在谷歌学术的引用量已高达38295次。 深度残差收缩网络是深度残差网络的一种的改进版本,其实是深度残差网络、注意力机制 ...
顾名思义,深度残差收缩网络是由“残差网络”和“收缩”两个部分所组成的,是“残差网络”的一种改进算法。 其中,残差网络在2016年获得了ImageNet图像识别竞赛的冠军,目前已成为深度学习领域的基础网络;“收缩”就是“软阈值化”,是许多信号降噪方法的核心步骤。 深度残差收缩网络也是一种“注意力 ...
顾名思义,深度残差收缩网络是在“残差网络”基础上的一种改进算法,是由“残差网络”和“收缩”两部分所组成的。其中,残差网络在2016年斩获了ImageNet图像识别竞赛的冠军,目前已经成为了深度学习领域的基础网络;收缩指的是软阈值化,是许多信号降噪算法的关键步骤。在深度残差收缩网络中,软阈值 ...
对于基于深度学习的分类算法,其关键不仅在于提取与标签相关的目标信息,剔除无关的信息也是非常重要的,所以要在深度神经网络中引入软阈值化。阈值的自动设置,是深度残差收缩网络的核心贡献。需要注意的是,软阈值化中的阈值,需要满足一定的条件。这篇文章中的阈值设置,事实上,是在注意力机制下进行的。下面分别 ...
翻译仅为学习,欢迎转载。 【题目】Deep Residual Shrinkage Networks for Fault Diagnosis【翻译】基于深度残差收缩网络的故障诊断 Abstract (摘要) 【翻译】本文提出了一种新的深度学习方法,即深度残差收缩网络,以增强深度 ...
深度残差收缩网络其实是一种通用的特征学习方法,是深度残差网络ResNet、注意力机制和软阈值化的集成,可以用于图像分类。本文采用TensorFlow 1.0和TFLearn 0.3.2,编写了图像分类的程序,采用的图像数据为CIFAR-10。CIFAR-10是一个非常常用的图像数据集,包含10 ...
1. 深度残差收缩网络的初衷 大家有没有发现这样一种现象:在很多数据集中,每个样本内部,都或多或少地包含着一些与标签无关的信息;这些信息的话,其实就是冗余的。 然后,即使在同一个样本集中,各个样本的噪声含量也往往是不同的。 那么,降噪算法中常用的软阈值函数,能不能嵌入到深度残差网络中 ...
其实,这篇文章的摘要很好地总结了整体的思路。一共四句话,非常简明扼要。 我们首先来翻译一下论文的摘要: 第一句:This paper develops new deep lea ...