题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值>=1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确 ...
个不同类型的python语言趣味编程题 在求解的过程中培养编程兴趣,拓展编程思维,提高编程能力。 第一部分:趣味算法入门 第六题 问题分析: 牛顿迭代法是取x 之后,在这个基础上,找到比x 更接近的方程的根,一步一步迭代,从而找到更接近方程的近似根。 设r是f x 的根,选取x 作为r的初始近似值。过点 x , f x 作为曲线y f x 的切线L,L的方程为y f x f x x x ,求出L ...
2020-03-17 23:58 0 1011 推荐指数:
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值>=1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确 ...
100个不同类型的python语言趣味编程题 在求解的过程中培养编程兴趣,拓展编程思维,提高编程能力。 第一部分:趣味算法入门;第五题 如果你喜欢我的文章,请滑到下方点个推荐再走. ,以给我动力哦;转载请注名出处。然后..请多来做客鸭。 注:100个不同类型的python语言趣味编程题 ...
比二分更快的方法 如果要求一个高次方程的根,我们可以用二分法来做,这是最基础的方法了。但是有没有更好更快的方法呢? 我们先来考察一个方程f(x)的在点a的泰勒展开,展开到一阶就可以了(假设f(x)在点a可以泰勒展开,也就是泰勒展开的那个余项在n趋于无穷时趋于 ...
牛顿迭代法 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不 ...
//用弦截法求一元三次方程的根x^3-5x^2+16x-80=0 #include<stdio.h>#include<math.h> float f(float x) //定义子函数f(x) = x^3-5x^2+16x-80,当f(x) →0时,则x即为所求的实数根 ...
MATLAB实例:不动点迭代法求一元函数方程的根 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 之前写过一篇博客:MATLAB用二分法、不动点迭代法及Newton迭代(切线)法求非线性方程的根 - 凯鲁嘎吉 - 博客园 ,后来发现这篇 ...
用牛顿迭代法求下面方程在1.5附近的根: 答案解析: 牛顿迭代法的公式为: $x_{n+1}$ = $x_{n}$ - $\frac{f(x_{n})}{f'(x_{n})}$ 其中,$x_{n}$为输出的值,在该题目当中为1.5。$f(x_{n})$为公式2$x^3$- 4$x ...
用牛顿迭代法求下面方程在1.5附近的根: 答案解析: 牛顿迭代法的公式为: \(x_{n+1}\) = \(x_{n}\) - \(\frac{f(x_{n})}{f'(x_{n})}\) 其中,\(x_{n}\)为输出的值,在该题目当中为1.5。\(f(x_{n})\)为公式2\(x ...