RNN RNN的发源: 单层的神经网络(只有一个细胞,f(wx+b),只有输入,没有输出和hidden state) 多个神经细胞(增加细胞个数和hidden state,hid ...
在循环内加的teacher forcing机制,这种为目标确定的时候,可以这样加。 目标不确定,需要在循环外加。 decoder.py 中的修改 实现解码器 import torch.nn as nn import config import torch import torch.nn.functional as F import numpy as np import random class D ...
2020-02-22 00:11 0 940 推荐指数:
RNN RNN的发源: 单层的神经网络(只有一个细胞,f(wx+b),只有输入,没有输出和hidden state) 多个神经细胞(增加细胞个数和hidden state,hid ...
以下代码可以让你更加熟悉seq2seq模型机制 参考:https://blog.csdn.net/weixin_43632501/article/details/98525673 ...
num_sequence.py """ 数字序列化方法 """ class NumSequence: """ input : intintint output :[i ...
注意力机制和Seq2Seq模型 1.基本概念 2.两种常用的attention层 3.带注意力机制的Seq2Seq模型 4.实验 1. 基本概念 Attention 是一种通用的带权池化方法,输入由两部分构成:询问(query)和键值对(key-value pairs ...
2019-09-10 19:29:26 问题描述:什么是Seq2Seq模型?Seq2Seq模型在解码时有哪些常用办法? 问题求解: Seq2Seq模型是将一个序列信号,通过编码解码生成一个新的序列信号,通常用于机器翻译、语音识别、自动对话等任务。在Seq2Seq模型提出之前,深度学习网 ...
以下是对pytorch 1.0版本 的seq2seq+注意力模型做法语--英语翻译的理解(这个代码在pytorch0.4上也可以正常跑): ...
1. Attention与Transformer模型 Attention机制与Transformer模型,以及基于Transformer模型的预训练模型BERT的出现,对NLP领域产生了变革性提升。现在在大型NLP任务、比赛中,基本很少能见到RNN的影子了。大部分是BERT(或是其各种变体 ...
Seq2Seq模型 基本原理 核心思想:将一个作为输入的序列映射为一个作为输出的序列 编码输入 解码输出 解码第一步,解码器进入编码器的最终状态,生成第一个输出 以后解码器读入上一步的输出,生成当前步输出 ...