view、reshape 两者功能一样:将数据依次展开后,再变形 变形后的数据量与变形前数据量必须相等。即满足维度:ab...f = xy...z reshape是pytorch根据numpy中的reshape来的 -1表示,其他维度数据已给出情况下 ...
view、reshape 两者功能一样:将数据依次展开后,再变形 变形后的数据量与变形前数据量必须相等。即满足维度:ab...f = xy...z reshape是pytorch根据numpy中的reshape来的 -1表示,其他维度数据已给出情况下 ...
Tensor类的成员函数dim()可以返回张量的维度,shape属性与成员函数size()返回张量的具体维度分量,如下代码定义了一个两行三列的张量: f = torch.randn(2, 3) print(f.dim()) print(f.size()) print ...
...
1. 扩展Tensor维度 相信刚接触Pytorch的宝宝们,会遇到这样一个问题,输入的数据维度和实验需要维度不一致,输入的可能是2维数据或3维数据,实验需要用到3维或4维数据,那么我们需要扩展这个维度。其实特别简单,只要对数据加一个扩展维度方法就可以了。 1.1 ...
引言 本篇介绍tensor的维度变化。 维度变化改变的是数据的理解方式! view/reshape:大小不变的条件下,转变shape squeeze/unsqueeze:减少/增加维度 transpose/t/permute:转置,单次/多次交换 ...
涉及的方法有下面几种: 拼接张量 torch.cat(seq, dim=0, out=None) → Tensor 在指定的维度dim上对序列seq进行连接操作。 参数: seq (sequence of Tensors) - Python序列或相同类型的张量序列 ...
增加一个维度 out.unsqueeze(-1) 降低一个维度 out.squeeze(dim=1) ...
; Pytorch中tensor的通道顺序:NCHW TensorRT中的tensor 通道顺序 ...