保存训练好的机器学习模型 当我们训练好一个model后,下次如果还想用这个model,我们就需要把这个model保存下来,下次直接导入就好了,不然每次都跑一遍,训练时间短还好,要是一次跑好几天的那怕是要天荒地老了。。sklearn官网提供了两种保存model的方法:官网地址 1. ...
选择并训练模型 至此,我们已明确了问题,并对数据进行了预处理。现在我们选择并训练一个机器学习模型。 在训练集上训练模型 这个过程相对来说较为简单,我们首先训练一个线性回归模型: 这样就已完成了一个线性回归模型的训练,非常简单。我们从训练集里抓几条数据验证一下: 可以看到预测的精准度并不高,我们可以看一下这个模型的RMSE 均方误差 的大小: 从均方误差的大小来看,这并不是一个很好的结果,说明模型存 ...
2020-02-15 13:41 0 721 推荐指数:
保存训练好的机器学习模型 当我们训练好一个model后,下次如果还想用这个model,我们就需要把这个model保存下来,下次直接导入就好了,不然每次都跑一遍,训练时间短还好,要是一次跑好几天的那怕是要天荒地老了。。sklearn官网提供了两种保存model的方法:官网地址 1. ...
前言 在我们构建完机器学习模型,经常会遇到训练得到模型无法正确预测,这之后我们往往会采取下面的一些方案: 增加训练数据 减少特征的个数 增加更多的特征 增加多项式特征(X1*X2 ...) 增大lambda的值 减小lambda的值 若是不了解模型具体的问题所在 ...
在微博上看到七月算法寒老师总结的完整机器的学习项目的工作流程,结合天池比赛的经历写的。现在机器学习应用非常流行,了解机器学习项目的流程,能帮助我们更好的使用机器学习工具来处理实际问题。 1. 理解实际问题,抽象为机器学习能处理的数学问题 理解实际业务场景问题是 ...
前言 以下内容是个人学习之后的感悟,转载请注明出处~ 经过前几篇博客的学习,我们了解到了线性回归、逻辑回归、神经网络等的一些知识。然而,到底该怎么开发一个 机器学习系统或者选择并改进一个学习系统呢?这应该是很多初学者的困惑之处。那么本文会带领你更一步了解 ...
什么是分类问题,什么是回归问题?以及两者的区别 什么是二叉树? 二叉树很容易理解,在这里我们一般用满二叉树:就是非叶子节点都有2个分支的树形数据结构 什么是决策树? 决策树最初是用来做 ...
来源商业新知网,原标题:开源鉴黄AI新鲜出炉:代码+预训练模型,还附手把手入门教程 要入门机器学习,一个自己感兴趣又有丰富数据的领域再好不过了。 今天我们就来学习用Keras构建模型,识别NSFW图片,俗称造个鉴黄AI。 资源来自一名印度小哥Praneeth Bedapudi,涉及 ...
cross_val_score(model_name, x_samples, y_labels, cv=k) 作用:验证某个模型在某个训练集上的稳定性,输出k个预测精度。 K折交叉验证(k-fold) 把初始训练样本分成k份,其中(k-1)份被用作训练集,剩下一份被用作评估集,这样一共可以对 ...
机器学习-Python中训练模型的保存和再使用 模型保存 BP:model.save(save_dir) SVM: 模型调用: BP: SVM: ...