一.线性方程组求解定理 1.线性方程组有解判别定理 线性方程组a11 x1 + a12 x2 + … + a1n x n = b1 ,a21 x1 + a22 x2 + … + a2n x n = b2 ...
一.线性方程组求解定理 1.线性方程组有解判别定理 线性方程组a11 x1 + a12 x2 + … + a1n x n = b1 ,a21 x1 + a22 x2 + … + a2n x n = b2 ...
3.5 线性方程组解的结构 (1)齐次线性方程组解的结构 什么是线性方程组的解的结构? 所谓线性方程组解的结构,就是当线性方程组有五险多个解时,解与解之间的关系。 备注:当方程组存在唯一解时,无须讨论解的结构 性质1:若x=§1, x = §2 是齐次线性方程组 Ax ...
SVD分解 只有非方阵才能进行奇异值分解 SVD分解:把矩阵分解为 特征向量矩阵+缩放矩阵+旋转矩阵 定义 设\(A∈R^{m×n}\),且$ rank(A) = r (r ...
3.3 线性方程组有解的判定 3.3.1 非齐次线性方程组解的判定 3.3.2 齐次线性方程组解的判定 ...
一. 矩阵分解: 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常 ...
例 1:在有理数中,解线性方程组 \[\begin{cases} x_1 - x_2 + x_3 = 1 \\ x_1 - x_2 - x_3 = 3 \\ 2x_1 - 2x_2 - x_3 = 3 \end{cases} \] 增广矩阵经过若干次初等行变换,可得阶梯 ...
3 线性方程组的解集的结构 3.1 n维向量空间\(K^n\) 1、定义1:数域K上所有n元有序数组组成的集合\(K^{n}\),连同定义在它上面的加法运算和数量乘法运算,以及满足的8条运算法则一起,称为数域K上的一个n维向量空间。\(K^{n}\)的元素称为n维向量;设向量\(\alpha ...