原文:梯度下降法求解线性回归

梯度下降法 梯度下降法 英语:Gradient descent 是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度 或者是近似梯度 的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点 这个过程则被称为梯度上升法。 梯度下降的形象解释 现在有一个山谷,你想要到达山谷的最低端,你此时在A点 ...

2020-01-24 15:59 0 2123 推荐指数:

查看详情

梯度下降法求解多元线性回归

线性回归形如y=w*x+b的形式,变量为连续型(离散为分类)。一般求解这样的式子可采用最小二乘法原理,即方差最小化, loss=min(y_pred-y_true)^2。若为一元回归,就可以求w与b的偏导,并令其为0,可求得w与b值;若为多元线性回归, 将用到梯度下降法求解,这里的梯度值w的偏 ...

Sun Feb 16 22:13:00 CST 2020 0 1094
线性回归和批量梯度下降法python

通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多:           图1. 迭代过程中的误差cost ...

Wed Dec 11 06:01:00 CST 2013 0 6763
线性回归梯度下降法[一]——原理与实现

看了coursea的机器学习课,知道了梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic ...

Tue Dec 13 00:23:00 CST 2016 5 11092
线性回归梯度下降法[二]——优化与比较

接着上文——机器学习基础——梯度下降法(Gradient Descent)往下讲。这次我们主要用matlab来实现更一般化的梯度下降法。由上文中的几个变量到多个变量。改变算法的思路,使用矩阵来进行计算。同时对算法的优化和调参进行总结。即特征缩放(feature scaling)问题和学习速率 ...

Mon Dec 26 05:09:00 CST 2016 0 2383
线性回归模型与梯度下降法

一、机器学习概述: 1. 学习动机: 机器学习已经在不知不觉中渗透到人们生产和生活中的各个领域,如邮箱自动过滤的垃圾邮件、搜索引擎对链接的智能排序、产品广告的个性化推荐等; 机器学习 ...

Tue Nov 01 05:12:00 CST 2016 1 11961
梯度下降法求解线性回归的python实现及其结果可视化(一)

编者注:本文包含了使用Python2.X读取数据、数据处理、作图,构建梯度下降法函数求解一元线性回归,并对结果进行可视化展示,是非常综合的一篇文章,包含了Python的数据操作、可视化与机器学习等内容。学习了这一篇文章就大概了解或掌握相关Python编程与数据分析等内容。另外,本文还巧妙 ...

Mon May 07 05:45:00 CST 2018 0 4155
sklearn中实现随机梯度下降法(多元线性回归

sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小。另外,在运用随机梯度下降法之前需要利用 ...

Wed Aug 07 22:11:00 CST 2019 0 1482
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM