原文:梯度下降法Gradient descent(最速下降法Steepest Descent)

最陡下降法 steepest descent method 又称梯度下降法 英语:Gradient descent 是一个一阶最优化算法。 函数值下降最快的方向是什么 沿负梯度方向d amp x gk d gk ...

2020-01-05 02:07 0 674 推荐指数:

查看详情

matlab实现梯度下降法(Gradient Descent)的一个例子

  在此记录使用matlab作梯度下降法(GD)求函数极值的一个例子:   问题设定:   1. 我们有一个$n$个数据点,每个数据点是一个$d$维的向量,向量组成一个data矩阵$\mathbf{X}\in \mathbb{R}^{n\times d}$,这是我们的输入特征矩阵 ...

Mon Apr 06 17:56:00 CST 2020 0 5046
最速下降法

1.最速下降方向 函数f(x)在点x处沿方向d的变化率可用方向导数来表示。对于可微函数,方向导数等于梯度与方向的内积,即: Df(x;d) = ▽f(x)Td, 因此,求函数f(x)在点x处的下降最快的方向,可归结为求解下列非线性规划: min ▽f(x)Td s.t. ||d ...

Wed Oct 15 04:55:00 CST 2014 0 5246
matlab 梯度法(最速下降法

norm(A,p)当A是向量时norm(A,p) Returns sum(abs(A).^zhip)^(/p), for any <= p <= ∞.norm(A) Returns nor ...

Fri Jun 05 17:13:00 CST 2020 0 753
梯度下降Gradient Descent

  转载请注明出处:http://www.cnblogs.com/Peyton-Li/   在求解机器学习算法的优化问题时,梯度下降是经常采用的方法之一。   梯度下降不一定能够找到全局最优解,有可能是一个局部最优解。但如果损失函数是凸函数,梯度下降法得到的一定是全局最优解 ...

Mon Sep 18 03:57:00 CST 2017 0 1160
梯度下降Gradient descent

梯度下降Gradient descent) 在有监督学习中,我们通常会构造一个损失函数来衡量实际输出和训练标签间的差异。通过不断更新参数,来使损失函数的值尽可能的小。梯度下降就是用来计算如何更新参数使得损失函数的值达到最小值(可能是局部最小或者全局最小)。 梯度下降计算流程 假设 ...

Sat Aug 18 03:38:00 CST 2018 0 1465
<反向传播(backprop)>梯度下降法gradient descent的发展历史与各版本

  梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受。最早GD由很多研究团队各自独立提出来,可大都无人问津,而hinton做的研究完整表述了GD方法,同时hinton为自己的研究多次走动人际关系使得其论文出现在了当时的《nature》上,因此GD得到 ...

Mon Oct 07 02:33:00 CST 2019 1 596
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM