如下: torch.nn.Linear(in_features, out_features, bias=True, ...
模型训练的三要素:数据处理 损失函数 优化算法 数据处理 模块torch.utils.data 从线性回归的的简洁实现 初始化模型参数 模块torch.nn.init 开始 from torch.nn import init pytorch的init模块提供了多中参数初始化方法 init.normal net .weight, mean , std . 初始化net .weight的期望为 ,标 ...
2019-12-25 15:41 0 684 推荐指数:
如下: torch.nn.Linear(in_features, out_features, bias=True, ...
关于该类: 可以对输入数据进行线性变换: $y = x A^T + b$ in_features: 输入数据的大小。 out_features: 输出数据的大小。 bias: 是否添加一个可学习的 bias,即上式中的 $b$。 该线性变换,只对输入 ...
torch.nn.Linear的作用是对输入向量进行矩阵的乘积和加法。y=x(A)转置+b。这点类似于全连接神经网络的的隐藏层。in_feature代表输入神经元的个数。out_feature代表输出神经元的个数。bias为False不参与训练。如果为True则参与训练 ...
import torch x = torch.randn(128, 20) # 输入的维度是(128,20)m = torch.nn.Linear(20, 30) # 20,30是指维度output = m(x)print('m.weight.shape:\n ', m.weight.shape ...
我学习pytorch框架不是从框架开始,从代码中看不懂的pytorch代码开始的 可能由于是小白的原因,个人不喜欢一些一下子粘贴老多行代码的博主或者一些弄了一堆概念,导致我更迷惑还增加了畏惧的情绪(个人感觉哈),我觉得好像好多人都是喜欢给说的明明白白的,难听点就是嚼碎了喂我们。这样也行 ...
学习pytorch路程之动手学深度学习-3.4-3.7 置信度、置信区间参考:https://cloud.tencent.com/developer/news/452418 本人感觉还是挺好理解的 交叉熵参考博客:https://www.cnblogs.com/kyrieng/p ...
文章目录: 目录 1 模型三要素 2 参数初始化 3 完整运行代码 4 尺寸计算与参数计算 1 模型三要素 三要素其实很简单 必须要继承nn.Module这个类,要让PyTorch知道这个类是一个Module 在__init__(self ...
前言: class torch.nn.Linear(in_features, out_features, bias = True) 对传入数据应用线性变换:y = A x + b(是一维函数给我们的理解的) 参数: in_features:每个输入(x)样本的特征 ...