熵是信息论非常重要的概念。本文简要介绍一下几个概念: 熵 联合熵 条件熵 相对熵 交叉熵 熵 随机变量\(X\)的分布的熵为: \[H(X) = - \sum_x p(x)\log p(x) \] 性质: 熵是随机变量不确定性的度量,随机变量 ...
本文从信息论和最大似然估计得角度推导交叉熵作为分类损失函数的依据。 从熵来看交叉熵损失 信息量 信息量来衡量一个事件的不确定性,一个事件发生的概率越大,不确定性越小,则其携带的信息量就越小。 设 X 是一个离散型随机变量,其取值为集合 X x ,x , dots,x n ,则其概率分布函数为 p x Pr X x ,x in X ,则定义事件 X x 的信息量为: I x log p x 当 p ...
2019-12-19 15:29 2 32459 推荐指数:
熵是信息论非常重要的概念。本文简要介绍一下几个概念: 熵 联合熵 条件熵 相对熵 交叉熵 熵 随机变量\(X\)的分布的熵为: \[H(X) = - \sum_x p(x)\log p(x) \] 性质: 熵是随机变量不确定性的度量,随机变量 ...
关于交叉熵在loss函数中使用的理解 交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵,发现自己对交叉熵的理解有些 ...
交叉熵损失函数 熵的本质是香浓信息量\(\log(\frac{1}{p})\)的期望 既然熵的本质是香浓信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...
1. Cross entropy 交叉熵损失函数用于二分类损失函数的计算,其公式为: 其中y为真值,y'为估计值.当真值y为1时, 函数图形: 可见此时y'越接近1损失函数的值越小,越接近0损失函数的值越大. 当真值y为0时, 函数图形: 可见此时y'越接近0损失 ...
交叉熵损失函数的概念和理解 觉得有用的话,欢迎一起讨论相互学习~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定义 ...
损失函数:交叉熵 交叉熵用于比较两个不同概率模型之间的距离。即先把模型转换成熵这个数值,然后通过数值去定量的比较两个模型之间的差异。 信息量 信息量用来衡量事件的不确定性,即该事件从不确定转为确定时的难度有多大。 定义信息量的函数为: \[f(x):=\text{信息量 ...
交叉熵损失是分类任务中的常用损失函数,但是是否注意到二分类与多分类情况下的交叉熵形式上的不同呢? 两种形式 这两个都是交叉熵损失函数,但是看起来长的却有天壤之别。为什么同是交叉熵损失函数,长的却不一样? 因为这两个交叉熵损失函数对应不同的最后一层的输出:第一个对应的最后一层 ...
【简介】 交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。语言模型的性能通常用交叉熵和复杂度(perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义 ...