原文:贝叶斯笔记

绪论 贝叶斯学派的最基本的观点是:任一个未知量 theta 都可看作一个随机变量,应该用一个概率分布去描述对 theta 的未知状况。这个概率分布是在抽样前就有的关于 theta 的先验信息的概率称述。 似然函数属于联合密度函数,综合了总体信息和样本信息 L theta prime p X theta prime prod i n p x i theta prime 贝叶斯公式的密度函数形式与离散 ...

2019-11-18 20:23 0 337 推荐指数:

查看详情

和朴素是啥

目录 一、 什么是先验概率、似然概率、后验概率 公式推导 二、为什么需要朴素 三、朴素是什么 条件独立 举例:长肌肉 拉普拉平滑 半朴素 一、 ...

Mon Mar 30 23:21:00 CST 2020 2 2567
网络

把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了网络。 网络(Bayesian Network),又称有向无环图模型(directed acyclic graphical model ,DAG),是一种概率图模型,根据概率图的拓扑结构,考察一组 ...

Mon Dec 10 17:12:00 CST 2018 0 11008
网络的

联合概率表示两个事件共同发生的概率。A与B的联合概率表示为或者。 边缘概率(又称先验概率)是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中那些不需要的事件通过合并成它们的全概 ...

Tue Oct 01 05:07:00 CST 2019 0 363
统计

https://zhuanlan.zhihu.com/p/38553838 1 概率论和统计学的区别 简单来说,概率论和统计学解决的问题是互逆的。假设有一个具有不确定性的过程(process),然 ...

Wed Nov 03 20:52:00 CST 2021 0 230
算法

一、简介 用于描述两个条件概率之间的关系,一般,P(A|B)与P(B|A)的结果是不一样的,则是描述P(A|B)和P(B|A)之间的特定的关系。 公式:\[P({A_{\rm{i}}}|B) = \frac{{P(B|{A_{\rm{i}}})P({A_i})}}{{\sum ...

Thu Nov 29 05:47:00 CST 2018 0 2000
算法——

简介 学过概率理论的人都知道条件概率的公式:P(AB)=P(A)P(B|A)=P(B)P(A|B);即事件A和事件B同时发生的概率等于在发生A的条件下B发生的概率乘以A的概率。由条件概率公式推导出公式:P(B|A)=P(A|B)P(B)/P(A);即,已知P(A|B),P(A)和P(B ...

Tue Dec 11 19:44:00 CST 2018 0 2248
高斯

高斯用来处理连续数据,假设数据里每个特征项相关联的数据是连续值并且服从高斯分布,参考这里。 概率公式:在《白话大数据与机器学习》里使用了sklearn里的GaussionNB来处理连续数据:训练模型 clf = GaussianNB().fit(x, y)预测数据 ...

Tue Aug 16 18:32:00 CST 2016 0 1606
朴素

条件概率 •设A,B为任意两个事件,若P(A)>0,我们称在已知事件A发生的条件下,事件B发生的概率为条件概率,记为P(B|A),并定义 乘法公式 •如果P(A)>0 ...

Wed Jul 17 03:41:00 CST 2019 0 569
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM