上一节我们学习了Pytorch优化网络的基本方法,本节我们将以MNIST数据集为例,通过搭建一个完整的神经网络,来加深对Pytorch的理解。 一、数据集 MNIST是一个非常经典的数据集,下载链接:http://yann.lecun.com/exdb/mnist ...
在net.py里面构造网络,网络的结构为输入为 ,第一层隐藏层的输出为 , 第二层输出的输出为 , 最后一层的输出层为 , net.py main.py 进行网络的训练 ...
2019-10-22 14:44 0 306 推荐指数:
上一节我们学习了Pytorch优化网络的基本方法,本节我们将以MNIST数据集为例,通过搭建一个完整的神经网络,来加深对Pytorch的理解。 一、数据集 MNIST是一个非常经典的数据集,下载链接:http://yann.lecun.com/exdb/mnist ...
算的的上是自己搭建的第一个卷积神经网络。网络结构比较简单。 输入为单通道的mnist数据集。它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片 第二层 使用5*5的卷积和进行卷积 ...
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率。这次换一种神经网络(多层神经网络)来进行训练和测试。 1、获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便。关于MNIST的基本信息可以参考我的上一篇随笔 ...
前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%。在换用多层神经网络后,正确率已有很大的提升。这次将采用卷积神经网络继续进行测试。 1、模型基本结构 如下图所示,本次采用的模型共有8层(包含dropout层)。其中卷积层 ...
最后能得到99%的准确率 ...
的问题:(好吧,这块受训练水平的影响,还是借鉴另一篇博客的翻译:神经网络六大坑) 1,you d ...
转自:http://ruby.ctolib.com/article/wiki/77331 Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access ...
在前面的博客人工神经网络入门和训练深度神经网络,也介绍了与本文类似的内容。前面的两篇博客侧重的是如何使用TensorFlow实现,而本文侧重相关数学公式及其推导。 1 神经网络基础 1.1 单个神经元 一个神经元就是一个计算单元,传入$n$个输入,产生一个输出,再应用于激活函数。记$n$维 ...