1. 矩的概念 图像识别的一个核心问题是图像的特征提取,简单描述即为用一组简单的数据(图像描述量)来描述整个图像,这组数据越简单越有代表性越好。良好的特征不受光线、噪点、几何形变的干扰。图像识别发展几十年,不断有新的特征提出,而图像不变矩就是其中一个。 矩是概率与统计中的一个概念,是随机变量 ...
图像特征可以包括颜色特征 纹理特征 形状特征以及局部特征点等。其中局部特点具有很好的稳定性,不容易受外界环境的干扰。图像特征提取是图像分析与图像识别的前提,它是将高维的图像数据进行简化表达最有效的方式,从一幅图像的的数据矩阵中,我们看不出任何信息,所以我们必须根据这些数据提取出图像中的关键信息,一些基本元件以及它们的关系。 图像局部特征描述的核心问题是不变性 鲁棒性 和可区分性。由于使用局部图像特 ...
2019-09-28 16:39 0 2029 推荐指数:
1. 矩的概念 图像识别的一个核心问题是图像的特征提取,简单描述即为用一组简单的数据(图像描述量)来描述整个图像,这组数据越简单越有代表性越好。良好的特征不受光线、噪点、几何形变的干扰。图像识别发展几十年,不断有新的特征提出,而图像不变矩就是其中一个。 矩是概率与统计中的一个概念,是随机变量 ...
特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确的定义。特征的精确定义往往由问题或者应用类型 ...
这里使用的是python 3.5 、opencv_python-3.4.0+contrib,特征提取的代码如下: 结提取果: ...
图像局部特征点检测算法综述 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 ...
特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义: 至今为止特征没有万能和精确的定义。特征的精确 ...
一、LBP算子 局部二值模式是一种灰度范围内的非参数描述子,具有对灰度变化不敏感且计算速度快等优点[1].LBP算子利用中心像素的领域像素与中心像素的比较结果进行编码。常见的LBPP,R模式有: P,R分别代表领域像素点的个数和领域半径,上图所示分别为8点半径为1;16点半径 ...
1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中 ...
,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例如:脸部 ...