原文:pytorch梯度下降法讲解(非常详细)

pytorch随机梯度下降法 梯度 偏微分以及梯度的区别和联系 导数是指一元函数对于自变量求导得到的数值,它是一个标量,反映了函数的变化趋势 偏微分是多元函数对各个自变量求导得到的,它反映的是多元函数在各个自变量方向上的变化趋势,也是标量 梯度是一个矢量,是有大小和方向的,其方向是指多元函数增大的方向,而大小是指增长的趋势快慢。 在寻找函数的最小值的时候可以利用梯度下降法来进行寻找,一般会出现以下 ...

2019-09-27 20:41 1 2893 推荐指数:

查看详情

通俗易懂讲解梯度下降法

https://zhuanlan.zhihu.com/p/335191534 前言:入门机器学习必须了解梯度下降法,虽然梯度下降法不直接在机器学习里面使用,但是了解梯度下降法的思维是后续学习其他算法的基础。网上已经有很多篇文章介绍梯度下降法。但大部分文章要么整一堆数学公式,要么就是简单说一下 ...

Tue Nov 16 20:58:00 CST 2021 0 379
梯度下降法和随机梯度下降法

1. 梯度   在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...

Sat Jun 01 23:33:00 CST 2019 0 2193
梯度下降法和随机梯度下降法

(1)梯度下降法 在迭代问题中,每一次更新w的值,更新的增量为ηv,其中η表示的是步长,v表示的是方向 要寻找目标函数曲线的波谷,采用贪心法:想象一个小人站在半山腰,他朝哪个方向跨一步,可以使他距离谷底更近(位置更低),就朝这个方向前进。这个方向可以通过微分得到。选择足够小的一段曲线 ...

Fri Dec 16 01:50:00 CST 2016 0 34664
梯度下降法分析

梯度下降法存在的问题   梯度下降法的基本思想是函数沿着其梯度方向增加最快,反之,沿着其梯度反方向减小最快。在前面的线性回归和逻辑回归中,都采用了梯度下降法来求解。梯度下降的迭代公式为: \(\begin{aligned} \theta_j=\theta_j-\alpha\frac ...

Mon Apr 20 23:54:00 CST 2015 3 2537
梯度下降法小结

关于机器学习的方法,大多算法都用到了最优化求最优解问题。梯度下降法(gradient descent)是求解无约束最优化问题的一种最常用的方法。它是一种最简单,历史悠长的算法,但是它应用非常广。下面主要在浅易的理解: 一、梯度下降的初步认识 先理解下什么是梯度,用通俗的话来说就是在原变量 ...

Wed Jul 24 08:19:00 CST 2019 0 561
梯度下降法小结

1. 前言 今天我们聊一聊机器学习和深度学习里面都至关重要的一个环节,优化损失函数。我们知道一个模型只有损失函数收敛到了一定的值,才有可能会有好的结果,降低损失方式的工作就是优化方法需要做的事。下面会讨论一些常用的优化方法:梯度下降法家族、牛顿法、拟牛顿法、共轭梯度法、Momentum ...

Wed Oct 17 06:51:00 CST 2018 0 12955
随机梯度下降法

 在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。 1. 梯度     在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来 ...

Sat Mar 24 05:06:00 CST 2018 0 2165
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM