1. 随机森林优缺点 随机森林(RF)是Bagging的一个扩展变体。RF在以决策树为基分类器进行集成的基础上,进一步在决策树的训练过程中引入了随机属性选择。 Bagging就是对数据集训练多个基分类器,然后将基分类器得到的结果进行投票表决作为最终分类的结果。基分类器在构建过程中需要尽可能保证 ...
优点 可用于线性 非线性分类,也可以用于回归,泛化错误率低,也就是说具有良好的学习能力,且学到的结果具有很好的推广性。 可以解决小样本情况下的机器学习问题,可以解决高维问题,可以避免神经网络结构选择和局部极小点问题。 SVM是最好的现成的分类器,现成是指不加修改可直接使用。并且能够得到较低的错误率,SVM可以对训练集之外的数据点做很好的分类决策。 缺点 对参数调节和和函数的选择敏感。 ...
2019-07-23 11:41 0 2067 推荐指数:
1. 随机森林优缺点 随机森林(RF)是Bagging的一个扩展变体。RF在以决策树为基分类器进行集成的基础上,进一步在决策树的训练过程中引入了随机属性选择。 Bagging就是对数据集训练多个基分类器,然后将基分类器得到的结果进行投票表决作为最终分类的结果。基分类器在构建过程中需要尽可能保证 ...
SVM有如下主要几个特点: (1) 非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射; (2) 对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心; (3) 支持向量是SVM的训练结果,在SVM分类决策中起决定作用 ...
一、支持向量机 (SVM)算法的原理 支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。它是将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超 ...
1决策树(Decision Trees)的优缺点 决策树的优点: 一、 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 二、 对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性 ...
1决策树(Decision Trees)的优缺点 决策树的优点: 一、 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 二、 对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 三、 能够同时处理数据型和常规型 ...
jq优点: 比原生js更易书写, 封装了很多api, 有丰富的插件库; 缺点: 每次升级与之前版本不兼容, 只能手动开发, 操作DOM很慢, 不方便, 变量名污染, 作用域混淆等. vue优缺点: 双向绑定, 虚拟DOM, diff算法, MVVM, 组件化, 通信方便, 路由分发等 ...
一、MyBatis框架的优点: 1. 与JDBC相比,减少了50%以上的代码量。 2. MyBatis是最简单的持久化框架,小巧并且简单易学。 3. MyBatis灵活,不会对应用程序或者 ...
1. 使用redis有哪些好处? (1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1) (2) 支持丰富数据类型,支 ...