...
...
概要 基于 sklearn 包自带的 iris 数据集,了解一下分类树的各种参数设置以及代表的意义。 iris 数据集介绍 iris 数据集包含 150 个样本,对应数据集的每行数据,每行数据包含每个样本的四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和样本的类别信息 ...
转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839 略有改动,仅供个人学习使用 简介 混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法。 一句话解释版本 ...
目录 1 二分类模型评估 1.1 混淆矩阵 1.1.1 ACC 1.1.2 PPV 1.1.3 TPR 1.1.4 FPR 1.1.5 F-Score 1.1.6 小结 ...
1:混淆矩阵对角线越大越好,代表的是没个类别预测正确的数量. 2:横向来看,每一行的总数是该类别实际数量,11396代表着 16428个该类别有11396预测为了该类别. 3:纵向来看,每一列总数代表着预测成该类别的数量,图中有14314个数据预测成了该类,共有11396 ...
今天我将讨论如何在多分类中使用混淆矩阵评估模型的性能。 什么是混淆矩阵? 它显示了实际值和预测值之间的差异。它告诉我们有多少数据点被正确预测,哪些数据点没有被正确预测。对于多分类来说,它是一个 N * N 矩阵,其中 n 是编号。输出列中的类别,也称为目标属性。一二分类任务中包含了 2 个类 ...
classification_report的调用为:classification_report(y_true, y_pred, labels=None, target_names=None, samp ...