前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 ...
卷积神经网络目前被广泛地用在图片识别上, 已经有层出不穷的应用, 如果你对卷积神经网络充满好奇心,这里为你带来pytorch实现cnn一些入门的教程代码 首先导入包 import torchfrom torch.autograd import Variableimport torch.nn as nnimport torchvisionimport torch.utils.data as Data ...
2019-05-20 10:03 0 617 推荐指数:
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 ...
莫烦视频网址 这个代码实现了预测和可视化 去掉可视化进行代码简化 ...
一、介绍 实验内容 内容包括用 PyTorch 来实现一个卷积神经网络,从而实现手写数字识别任务。 除此之外,还对卷积神经网络的卷积核、特征图等进行了分析,引出了过滤器的概念,并简单示了卷积神经网络的工作原理。 知识点 使用 PyTorch 数据集三件套的方法 卷积神经网络 ...
导入依赖 下载数据集 mnist数据集是一个公共的手写数字数据集,一共有7W张28*28像素点的0-9手写数字图片和标签,其中有6W张是训练集,1W张是测试集。 其中,x_train为训练集特征,y_train为训练集标签,x_test为测试集特征 ...
最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现。我们用了两种不同的方法来编写它。这里只放出我的代码。 MNIST数据集基于美国国家标准与技术研究院的两个数据集构建而成。训练集中包含250个人的手写数字,其中50%是高中生,50%来自人口 ...
1.导入必备的包 2.定义mnist数据的格式变换 3.下载数据集,定义数据迭代器 4.定义全连接神经网络(多层感知机)(若是CNN卷积神经网络,则在网络中添加几个卷积层即可 ...
折腾了几天,爬了大大小小若干的坑,特记录如下。代码在最后面。 环境: 方法: 调试代码: 坑1:ModuleNotFoundError: ...
上代码: 打开cmd,进入当前文件夹,执行tensorboard --logdir='C:\Users\FELIX\Desktop\tensor学习\logs' 就可以进入tenso ...