3.1 微调的原理 在已经训练好的模型中,对指定层进行参数的微调,使之适应新的问题。 3.2 数据准备 将数据集切分成训练集和验证集 将数据转换为tfrecord格式 首先需要将数据转换成tfrecord的形式。在data_prepare文件夹下,运行 ...
.目标 本篇文章介绍的重点是如何使用TensorFlow在自己的图像数据上训练深度学习模型,主要涉及的方法是对已经预训练好的ImageNet模型进行微调 Fine tune 。使用谷歌的Colaboratory python 环境 实现。 .微调原理 什么是微调 这里以VGG 为例进行讲解。 如图下图所示,VGG 的结构为卷积 全连接层。卷积层分为 个部分共 层,即图中的conv conv 。还 ...
2019-05-15 17:36 0 998 推荐指数:
3.1 微调的原理 在已经训练好的模型中,对指定层进行参数的微调,使之适应新的问题。 3.2 数据准备 将数据集切分成训练集和验证集 将数据转换为tfrecord格式 首先需要将数据转换成tfrecord的形式。在data_prepare文件夹下,运行 ...
一、数据准备 首先要做一些数据准备方面的工作:一是把数据集切分为训练集和验证集, 二是转换为tfrecord 格式。在data_prepare/文件夹中提供了会用到的数据集和代码。首先要将自己的数据集切分为训练集和验证集,训练集用于训练模型, 验证集用来验证模型的准确率。这篇文章已经提供 ...
法和网络的函数,只要喂食自己的训练集就可以完成自己的模型,感觉超方便!!!激动!!!因为虽然原理流程了解了 ...
一、简介 AlexNet:(2012)主要贡献扩展 LeNet 的深度,并应用一些 ReLU、Dropout 等技巧。AlexNet 有 5 个卷积层和 3 个最大池化层,它可分为上下两个完全相同的分支,这两个分支在第三个卷积层和全连接层上可以相互交换信息。它是开启了卷积神经网络做图像处理的先河 ...
开始答辩: 我们的项目的方向是基于深度学习的图像识别。图像识别可以说是人工智能中相当基础而又相当有应用前景的一门技术。 计算机的图像识别技术在公共安全、生物、工业、农业、交通、医疗等很多领域都有应用。 例如交通方面的车牌识别系统;公共安全方面的的人脸识别技术、指纹识别 ...
1. 安装配置 1、pip install pytesseract 2、pip install pillow 3、安装tesseract-ocr:http://jaist.dl.sourcef ...
图像识别 ...
这是一个最简单的图像识别,将图片加载后直接利用Python的一个识别引擎进行识别 将图片中的数字通过 pytesseract.image_to_string(image) 识别后将结果存入到本地的txt文件中 ...