...
理解这个代码之前最好先理解LSTM手写数字识别。 类比图像解释自然语言处理 . 自然语言的输入需要先把句子截成固定长度的片段,这就是一个序列,也就是一张图片,片段中的每一个字或者词就是图片的一行,lstm每个时序输入这个字或者词。 . 不同之处在于,自然语言每个时序都有x和y,y就是x后的那个字或者词,而图片是很多x一个y,这决定了两者的网络结构不同。 . 所以测试时,自然语言不需要输入完整序列 ...
2019-03-18 10:45 0 753 推荐指数:
...
...
目录 网络流量预测入门(一)之RNN 介绍 RNN简介 RNN 结构 RNN原理 结构原理 损失函数$E$ 反向传播 总结 参考 ...
NLP三大特征抽取器(CNN/RNN/TF)比较 参考知乎张俊林:https://zhuanlan.zhihu.com/p/54743941 目录 NLP三大特征抽取器(CNN/RNN/TF)比较 1. NLP任务 1.1 NLP ...
1 列出几种文本特征提取算法 答:文档频率、信息增益、互信息、X^2统计、TF-IDF (引用自:https://www.cnblogs.com/jiashun/p/CrossEntropyLos ...
摘要:本篇文章将分享循环神经网络LSTM RNN如何实现回归预测。 本文分享自华为云社区《[Python人工智能] 十四.循环神经网络LSTM RNN回归案例之sin曲线预测 丨【百变AI秀】》,作者:eastmount。 一.RNN和LSTM回顾 1.RNN (1) RNN原理 ...
背景知识 最近再看一些量化交易相关的材料,偶然在网上看到了一个关于用RNN实现股票预测的文章,出于好奇心把文章中介绍的代码在本地跑了一遍,发现可以work。于是就花了两个晚上的时间学习了下代码,顺便把核心的内容翻译成中文分享给大家。 首先讲讲对于股票预测的理解,股票是一种可以轻易用数字 ...
硕士毕业之前曾经对基于LSTM循环神经网络的股价预测方法进行过小小的研究,趁着最近工作不忙,把其中的一部分内容写下来做以记录。 此次股票价格预测模型仅根据股票的历史数据来建立,不考虑消息面对个股的影响。曾有日本学者使用深度学习的方法来对当天的新闻内容进行分析,以判断其对股价正面性 ...