原文:机器学习笔记--参数估计

我们进行参数估计的方法一般主要有最大似然估计和贝叶斯估计。这里提一下两种估计的门派来加深理解: 最大似然估计属于统计学里的频率学派。频率派从事件本身出发,认定事件本身是随机的。事件在重复试验中发生的频率趋于极限时,这个极限就是该事件的概率。事件的概率一般设为随机变量,当变量为离散变量时,变量的分布用概率质量函数来表征 变量连续时,则用概率密度函数去表征。 贝叶斯估计属于统计学里的贝叶斯学派。贝叶斯 ...

2019-03-10 20:59 2 441 推荐指数:

查看详情

机器学习中的参数估计方法

原文:https://blog.csdn.net/yt71656/article/details/42585873 前几天上的机器学习课上,老师讲到了参数估计的三种方法:ML,MAP和Bayesian estimation。课后,又查了一些相关资料,以及老师推荐的LDA方面的论文 ...

Sun Dec 15 19:04:00 CST 2019 0 384
机器学习-单高斯分布参数估计

高斯分布 对于单维高斯分布而言,其概率密度函数可以表示成 \[p(x)=\frac{1}{\sqrt{2 \pi}\sigma}e^{-\frac{(x-u)^2}{2\sigma^2}} ...

Sun Apr 19 18:11:00 CST 2020 0 796
机器学习】--非参数估计实验 parzen窗以及k-近邻概率密度

一.实验题目 (所用参考教材:《模式分类》---机械工业出版社 李宏东 姚天翔等译) 4-3.考虑对于表格中的数据进行parzen窗估计和设计分类器,窗函数为一个球形的高斯函数, <a>编写程序,使用parzen窗估计方法对一个任意的样本点x进行分类。对分类器的训练则使用表格中 ...

Tue Feb 28 00:23:00 CST 2017 2 6294
参数估计&非参数估计

1.估计概率密度p(x|wi) (1)贝叶斯决策 (2)P(wi)和p(x | wi)的估计方法 ①先验概率P(wi)估计:   用训练数据中各类出现的频率估计。   依靠经验。 ② 类条件概率密度函数p(x | wi)估计,2类方法: 参数估计:最大似然估计,贝叶斯估计 ...

Thu Apr 30 00:56:00 CST 2020 0 927
概率密度估计笔记——非参数估计

主要解决在样本的分布没有足够的先验,也就是说我们不仅不知道分布的参数,连是什么类型的分布都不知道,这种情况下显然不能用参数估计的方法。这里从简单直观的方法——直方图法入手,引出KNN和Parzen窗两种方法。 直方图密度估计:出发点是分布函数 ,假设在某一个很小很小的超立方体V中是均匀分布 ...

Sun Mar 20 18:39:00 CST 2016 0 2000
二、参数估计

1. 点估计与优良性 点估计   总体 X 的分布函数形式已知,但它的一个或多个参数未知,借助总体的一个样本来估计总体未知参数的值的问题称为点估计。   点估计问题就是要构建一个适当的统计量 θ-hat(X1、.. 、Xn),用它的观察值 θ-hat (x1、.. 、 xn)来估计 ...

Tue Dec 14 20:27:00 CST 2021 0 758
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM