完整版请微信关注 大数据技术宅 序言:语音识别作为人工智能领域重要研究方向,近几年发展迅猛,其中RNN的贡献尤为突出。RNN设计的目的就是让神经网络可以处理序列化的数据。本文笔者将陪同小伙伴们一块儿踏上语音识别之梦幻旅途,相信此处风景独好。 内容目录 环境准备 RNN与LSTM介绍RNNLSTM语音识别介绍声学特征提取声学特征转换成音素 声学模型 音素转文本 语言模型 解码 语音识别简单实现提取W ...
2019-02-23 15:20 2 11678 推荐指数:
论文: CTC:Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks 思想: 语音识别中,一般包含语音 ...
本文介绍 kaldi-ctc 构建 CTC[1, 2, 3, 4] 语音识别加权有限状态机(WFST)解码网络的方式。 示例相关资源 lifeiteng/codingmath/CTC-decoding-graph 构建语言模型 以 单句 “how are you ...
目录 基于keras的中文语音识别 音频文件特征提取 文本数据处理 数据格式处理 构建模型 模型训练及解码 aishell数据转化 该项目github地址 基于keras的中文语音识别 该项目实现了GRU-CTC中文语音识别 ...
最近用tensorflow写了个OCR的程序,在实现的过程中,发现自己还是跳了不少坑,在这里做一个记录,便于以后回忆。主要的内容有lstm+ctc具体的输入输出,以及TF中的CTC和百度开源的warpCTC在具体使用中的区别。 正文 输入输出 因为我最后要最小化的目标函数 ...
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文作者:罗冬日 目前主流的语音识别都大致分为特征提取,声学模型,语音模型几个部分。目前结合神经网络的端到端的声学模型训练方法主要CTC和基于Attention两种。 本文主要介绍CTC算法的基本概念,可能应用的领域 ...
摘要:在本文介绍的工作中,我们展示了一个基于RNN和CTC的语音识别模型,在这个模型中,基于WFST的解码能够有效地融合词典和语言模型. 本文分享自华为云社区《语境偏移如何解决?专有领域端到端ASR之路(三)》,原文作者:xiaoye0829 。 这篇文章我们介绍一个结合CTC与WFST ...
Connectionist Temporal Classification (CTC) CTC可以用于线上实时地语音识别,编码器用的是单向的RNN,解码是用MLP来预测文字分布。 编码器将语音输入\(x^i\)编码成\(h^i\),MLP再对它乘上一个权重,接上Softmax,得到词表V大小 ...