原文:卷积神经网络和图像分类识别

Andrew Kirillov 著 Conmajia 译 年 月 日 原文发表于 CodeProject 年 月 日 . 中文版有小幅修改,已获作者本人授权. 本文介绍了如何使用 ANNT 神经网络库生成卷积神经网络进行图像分类识别. 全文约 , 字,建议阅读时间 分钟. 本文数学内容较多,如果感到不适,可以放弃. 这个库最终命名为 ANNT Artificial Neural Networks ...

2019-01-16 22:41 0 5044 推荐指数:

查看详情

卷积神经网络图像分类

解决的问题 该论文探讨了前人提出的卷积神经网络CNN和超像素方法相结合进行区域级图像分类的优缺点。指出该方法与按像素分类相比,基于区域的算法可以探索像素之间的空间关系,从而可以减少某些像素级别的分类错误。但是,该方法没有考虑超像素区域之间的空间约束,这可能会限制这些算法的性能。因此该论文提出 ...

Tue Jun 02 21:48:00 CST 2020 0 675
基于神经网络图像分类

算法描述:   神经网络图像分类算法首先通过PCA技术提取样本图像特征码与待分类图像特征码,然后将特征码送入神经网络进行训练,让神经网络学习每个类别图像的特征最后将未知类别图像送入神经网络,自动识别它的类型。步骤如下: 基于PCA技术提取每个样本的图像特征码。 根据样本特征码生成输入 ...

Sat Mar 21 00:49:00 CST 2020 0 1792
卷积神经网络图像识别

卷积神经网络图像识别 我们介绍了人工神经网络,以及它的训练和使用。我们用它来识别了手写数字,然而,这种结构的网络对于图像识别任务来说并不是很合适。本文将要介绍一种更适合图像、语音识别任务的神经网络结构——卷积神经网络(Convolutional Neural Network, CNN)。说卷积 ...

Thu Jan 17 16:26:00 CST 2019 0 7743
tensorflow学习笔记——图像识别卷积神经网络

  无论是之前学习的MNIST数据集还是Cifar数据集,相比真实环境下的图像识别问题,有两个最大的问题,一是现实生活中的图片分辨率要远高于32*32,而且图像的分辨率也不会是固定的。二是现实生活中的物体类别很多,无论是10种还是100种都远远不够,而且一张图片中不会只出现一个种类的物体 ...

Tue Aug 13 18:15:00 CST 2019 1 1865
Kaggle系列1:手把手教你用tensorflow建立卷积神经网络实现猫狗图像分类

去年研一的时候想做kaggle上的一道题目:猫狗分类,但是苦于对卷积神经网络一直没有很好的认识,现在把这篇文章的内容补上去。(部分代码参考网上的,我改变了卷积神经网络网络结构,其实主要部分我加了一层1X1的卷积层,至于作用,我会在后文详细介绍) 题目地址:猫狗大战 同时数据集也可以在上面 ...

Tue Oct 17 00:40:00 CST 2017 0 1099
神经网络加速器应用实例:图像分类

深度学习飞速发展过程中,人们发现原有的处理器无法满足神经网络这种特定的大量计算,大量的开始针对这一应用进行专用芯片的设计。谷歌的张量处理单元(Tensor Processing Unit,后文简称TPU)是完成较早,具有代表性的一类设计,基于脉动阵列设计的矩阵计算加速单元,可以很好的加速 ...

Sat Jul 27 05:37:00 CST 2019 1 903
卷积神经网络对图片分类-上

我们来看看在图像处理领域如何使用卷积神经网络来对图片进行分类。 1 让计算机做图片分类: 图片分类就是输入一张图片,输出该图片对应的类别(狗,猫,船,鸟),或者说输出该图片属于哪种分类的可能性最大。 人类看到一张图片马上就能分辨出里面的内容,但是计算机分辨一张图片就完全 ...

Mon Aug 29 17:50:00 CST 2016 0 8057
卷积神经网络对图片分类-中

接上篇:卷积神经网络对图片分类-上 5 池层(Pooling Layers) 池层通常用在卷积层之后,池层的作用就是简化卷积层里输出的信息, 减少数据维度,降低计算开销,控制过拟合。 如之前所说,一张28X28的输入图片,经过5X5的过滤器后会得到一个24X24的特征图像,继续 ...

Mon Sep 05 19:47:00 CST 2016 0 2398
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM