近几年来,基于神经网络的深度学习方法在计算机视觉、语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展。在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER)的研究中,深度学习也获得了不错的效果。最近,笔者阅读 ...
一 任务 Named Entity Recognition,简称NER。主要用于提取时间 地点 人物 组织机构名。 二 应用 知识图谱 情感分析 机器翻译 对话问答系统都有应用。比如,需要利用命名实体识别技术自动识别用户的查询,然后将查询中的实体链接到知识图谱对应的结点上,其识别的准确率将会直接影响到后续的一系列工作。 三 流程图 四 标注集 采用BMEWO标注体系进行标注 BME分别代表实体的首 ...
2019-01-11 15:25 0 1678 推荐指数:
近几年来,基于神经网络的深度学习方法在计算机视觉、语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展。在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER)的研究中,深度学习也获得了不错的效果。最近,笔者阅读 ...
命名实体识别 概念 命名实体识别(Named Entity Recognition,简称NER) , 是指识别文本中具有特定意义的词(实体),主要包括人名、地名、机构名、专有名词等等,并把我们需要识别的词在文本序列中标注出来。 例如有一段文本:天津市空港经济区 我们要在上面文本中识别一些区域 ...
简介 命名实体识别(Named Entity Recognition, NER)旨在从文本中抽取出命名实体,比如人名、地名、机构名等。它是一个非常重要的基础性任务,可以有效帮助后续的文本语义理解。 NER任务一般有两种类型:flat NER和nested NER。前者就是普通的NER,每个 ...
本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER)。 命名实体识别(Named Entity Recognition,简称NER)是信息提取、问答系统、句法分析、机器翻译等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中占有重要地位。一般来说,命名实体识别的任务 ...
本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER)。 常见算法如下: 命名实体识别(Named Entity Recognition,简称NER)是信息提取、问答系统、句法分析、机器翻译等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中 ...
前言 在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具——NLTK和Stanford NLP。在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现NER,只要你坚持看完,就一定会很有收获的。 OK,话不多说,让我们进入正题。 几乎所有 ...
一、NER简介 NER又称作专名识别,是自然语言处理中的一项基础任务,应用范围非常广泛。命名实体一般指的是文本中具有特定意义或者指代性强的实体,通常包括人名、地名、组织机构名、日期时间、专有名词等。NER包含以下model: 3 class model : Location ...
准备工作,先准备 python 环境,下载 BERT 语言模型 Python 3.6 环境 需要安装kashgari Backend ...