现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API 进行学习吧。 AUTOGRAD MECHANICS(自动求导机制) 这一部分做了解处理 ...
自动求导机制是pytorch中非常重要的性质,免去了手动计算导数,为构建模型节省了时间。下面介绍自动求导机制的基本用法。 自动求导机制 import torch from torch.autograd import Variable 简单的求导 求导对象是标量 x Variable torch.Tensor ,requires grad True y x print y y.backward pr ...
2018-12-28 15:21 0 858 推荐指数:
现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API 进行学习吧。 AUTOGRAD MECHANICS(自动求导机制) 这一部分做了解处理 ...
修改官方文档的错误 运行官方文档中的代码可能会报错(维度不一致): Traceback (most recent call last): File "<stdin>", li ...
一、计算图简介 在pytorch的官网上,可以看到一个简单的计算图示意图, 如下。 这个图里有两种节点:Variable节点和Function节点,Variable记录运算数据,Function记录运算操作。其中Variable节点又可以分为叶节点和非叶节点两类。叶 ...
Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心。 本文通过logistic回归模型来介绍Pytorch的自动求导机制。首先,本文介绍了tensor与求导相关 ...
自动求导机制是每一个深度学习框架中重要的性质,免去了手动计算导数,下面用代码介绍并举例说明Pytorch的自动求导机制。 首先介绍Variable,Variable是对Tensor的一个封装,操作和Tensor是一样的,但是每个Variable都有三个属性:Varibale的Tensor ...
从这里学习《DL-with-PyTorch-Chinese》 4.2用PyTorch自动求导 考虑到上一篇手动为由线性和非线性函数组成的复杂函数的导数编写解析表达式并不是一件很有趣的事情,也不是一件很容易的事情。这里我们用通过一个名为autograd的PyTorch模块来解决。 利用 ...
torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现(tensor变成variable之后才能进行反向传播求梯度?用变量.backward()进行反向传播之后,var.grad中保存了var的梯度) x = Variable ...