今天主要讲一下深度学习泰斗Geofrey Hinton 2006年发表在Nature上的一篇论文《Reducing the Dimensionality of Data with Neural Networks》。这篇文章也是第一篇深度学习的论文,在之前的话没有很好的方法应用在深度学习网络 ...
BP神经网络是 年由Rumelhart和Mcclelland为首的科学家提出的概念,是一种按照误差反向传播算法进行训练的多层前馈神经网络,是目前应用比较广泛的一种神经网络结构。BP网络神经网络由输入层 隐藏层和输出层三部分构成,无论隐藏层是一层还是多层,只要是按照误差反向传播算法构建起来的网络 不需要进行预训练,随机初始化后直接进行反向传播 ,都称为BP神经网络。BP神经网络在单隐层的时候,效率 ...
2018-11-18 20:10 0 9133 推荐指数:
今天主要讲一下深度学习泰斗Geofrey Hinton 2006年发表在Nature上的一篇论文《Reducing the Dimensionality of Data with Neural Networks》。这篇文章也是第一篇深度学习的论文,在之前的话没有很好的方法应用在深度学习网络 ...
DBN运用CD算法逐层进行训练,得到每一层的参数Wi和ci用于初始化DBN,之后再用监督学习算法对参数进行微调。本例中采用softmax分类器(下一篇随笔中)作为监督学习算法。 RBM与上一篇随笔中一致,通过多层RBM将softmax parameter从 (10L, 784L)降低到(10L ...
Deep Learning with TensorFlow IBM Cognitive Class ML0120EN Module 5 - Autoencoders 使用DBN识别手写体 传统的多层感知机或者神经网络的一个问题: 反向传播可能总是导致局部最小值。 当误差表面 ...
深度学习(二)--深度信念网络(Deep Belief Network,DBN) 一、受限玻尔兹曼机(Restricted Boltzmann Machine,RBM) 在介绍深度信念网络之前需要先了解一下受限玻尔兹曼机:受限玻尔兹曼机(英语:restricted Boltzmann ...
深度信念网络(DBN)和堆叠自编码(SAE)、深度自编码器(DAE)的区别 深度信念网络(DBN)和堆叠自编码(SAE)、深度自编码器(DAE)具有类似的思想,因此很容易混淆。 受限制玻尔兹曼机(Restricted Bolzmann Machine)以及自编码器(Autoencoder ...
部分内容来自:http://blog.csdn.net/mytestmy/article/details/9165031,http://blog.csdn.net/ztchun/article/det ...
受限玻尔兹曼机对于当今的非监督学习有一定的启发意义。 深度信念网络(DBN, Deep Belief Networks)于2006年由Geoffery Hinton提出。 ...