MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样 在MCMC(二)马尔科夫链中我们讲到给定一个概率平稳分布$\pi$, 很难直接找到对应的马尔科夫链状态转移矩阵$P ...
一 直接采样 直接采样的思想是,通过对均匀分布采样,实现对任意分布的采样。因为均匀分布采样好猜,我们想要的分布采样不好采,那就采取一定的策略通过简单采取求复杂采样。 假设y服从某项分布p y ,其累积分布函数CDF为h y ,有样本z Uniform , ,我们令 z h y ,即 y h z ,结果y即为对分布p y 的采样。 直接采样的核心思想在与CDF以及逆变换的应用。在原分布p y 中,如 ...
2018-11-15 13:05 0 1743 推荐指数:
MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样 在MCMC(二)马尔科夫链中我们讲到给定一个概率平稳分布$\pi$, 很难直接找到对应的马尔科夫链状态转移矩阵$P ...
MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样 在MCMC(三)MCMC采样和M-H采样中,我们讲到了M-H采样已经可以很好的解决蒙特卡罗方法需要的任意概率分布的样本集的问题 ...
在采样之马尔科夫链中我们讲到给定一个概率平稳分布π">π, 很难直接找到对应的马尔科夫链状态转移矩阵P">P。而只要解决这个问题,我们就可以找到一种通用的概率分布采样方法,进而用于蒙特卡罗模拟。本篇我们就讨论解决这个问题的办法:MCMC采样和它的易用版M-H采样 1.马尔科 ...
看了好多相关的知识,大致了解了一下马尔可夫链-蒙特卡罗采样理论,有必要记来下来。 蒙特卡罗积分:(来自:http://blog.csdn.net/itplus/article/details/19168937) 下面的写的很让人明白:好好理解一下,第一次感觉到积分与统计学的联系 ...
MCMC算法的核心思想是我们已知一个概率密度函数,需要从这个概率分布中采样,来分析这个分布的一些统计特性,然而这个这个函数非常之复杂,怎么去采样?这时,就可以借助MCMC的思想。 它与变分自编码不同在于:VAE是已知一些样本点,这些样本肯定是来自于同一分布,但是我们不知道这个分布函数的具体表 ...
MCMC全称是Markov Chain & Monte Carlo。 在概率图的框架中属于近似推断中的不确定性推断,与之相对的有近似推断中的变分推断(variational Inference)。 MCMC本质是基于“采样”的“随机”“近似”。有三个关键词。 ①采样是说MCMC本质 ...
如果我们要求$f(x)$的积分,可化成, \[\int {\frac{{f(x)}}{{p(x)}}p(x)dx} \] $p(x)$是x的概率分布,假设${g(x) = \frac{{f(x)} ...
一、MCMC 简介 1. Monte Carlo 蒙特卡洛 蒙特卡洛方法(Monte Carlo)是一种通过特定分布下的随机数(或伪随机数)进行模拟的方法。典型的例子有蒲丰投针、定积分计算等等,其基础是大数定律。 蒙特卡洛方法有哪些优缺点如下: 优点:计算准确性由采样的均匀程度 ...