【分类指标】 1.accuracy_score(y_true,y_pre) : 精度 2.auc(x, y, reorder=False) : ROC曲线下的面积;较大的AUC代表了较好的 ...
关于分类问题的metrics有很多,这里仅介绍几个常用的标准。 .Accuracy score 准确率 假设真实值为 y ,预测值为 hat y ,则Accuracy score的计算公式为: accuracy y, hat y dfrac m displaystyle sum i m y i hat y i ,举例说明: 参数解释: 加入参数normalize False后,计算的是预测正确的个 ...
2018-11-07 13:35 0 1627 推荐指数:
【分类指标】 1.accuracy_score(y_true,y_pre) : 精度 2.auc(x, y, reorder=False) : ROC曲线下的面积;较大的AUC代表了较好的 ...
metrics是sklearn用来做模型评估的重要模块,提供了各种评估度量,现在自己整理如下: 一.通用的用法:Common cases: predefined values 1.1 sklearn官网上给出的指标如下图所示: 1.2除了上图中的度量指标以外,你还可以自定义一些 ...
:sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_we ...
Python Sklearn.metrics 简介及应用示例 利用Python进行各种机器学习算法的实现时,经常会用到sklearn(scikit-learn)这个模块/库。 无论利用机器学习算法进行回归、分类或者聚类时,评价指标,即检验机器学习模型效果的定量指标,都是一个不可避免且十分重要 ...
1.accuracy_score(y_true,y_pre):准确率 总的来说就是分类正确的样本占总样本个数的比例,数据越大越好, 但是有一个明显的缺陷,即是当不同类别样本 ...
https://www.cnblogs.com/mindy-snail/p/12445973.html 1.confusion_matrix 利用混淆矩阵进行评估 混淆矩阵说白了就 ...
1.confusion_matrix 理论部分见https://www.cnblogs.com/cxq1126/p/12990784.html#_label2 2.classification_report y_true和y_pred的shape=(N ...
sklearn.metrics.classification_report()模型评估的一种,输出一个报告 参数说明 y_true:1 维数组,真实数据的分类标签 y_pred:1 维数组,模型预测的分类标签 labels:列表,需要评估的标签名 ...