目录 前言 1.adagrad 2.动量(Momentum) 3.RMSProp 4.Adam 附1 基于梯度的优化算法前后关系 附二 Gra ...
When training deep neural networks, it is often useful to reduce learning rate as the training progresses. This can be done by using pre definedlearning rate schedulesoradaptive learning rate methods. ...
2018-08-28 21:04 0 7419 推荐指数:
目录 前言 1.adagrad 2.动量(Momentum) 3.RMSProp 4.Adam 附1 基于梯度的优化算法前后关系 附二 Gra ...
,特别是分步训练时会导致显存溢出,导致程序崩溃。可以使用自适应配置来调整显存的使用情况。 一、Tenso ...
Learning rate这件小事 1. Learning Rate Finder Deep learning models are typically trained by a stochastic gradient descent optimizer. ...
https://www.zhihu.com/question/64134994 1、增加batch size会使得梯度更准确,但也会导致variance变小,可能会使模型陷入局部最优; 2、因此增大batch size通常要增大learning rate,比如batch size增大m倍,lr ...
本文从梯度学习算法的角度中看学习率对于学习算法性能的影响,以及介绍如何调整学习率的一般经验和技巧。 在机器学习中,监督式学习(Supervised Learning)通过定义一个模型,并根据训练集上的数据估计最优参数。梯度下降法(Gradient Descent)是一个广泛被用来最小化模型误差 ...
关于learning rate decay的问题,pytorch 0.2以上的版本已经提供了torch.optim.lr_scheduler的一些函数来解决这个问题。 我在迭代的时候使用的是下面的方法。 classtorch.optim.lr_scheduler.MultiStepLR ...
文章内容主要整理自Sinno Jialin Pan and Qiang Yang的论文《A survey on transfer Learning》。 1 迁移学习提出的背景及历史 1.1、迁移学习提出背景 在机器学习、深度学习和数据挖掘的大多数任务中,我们都会假设training ...