(学习这部分内容大约需要50分钟) 摘要 Gibbs采样是一种马尔科夫连蒙特卡洛(Markov Chain Monte Carlo, MCMC)算法, 其中每个随机变量从给定剩余变量的条件分布迭代地重新采样. 它是在概率模型中执行后验推理的简单且常用的高效方法. 预备知识 学习Gibbs ...
前面我们讲到了M H采样已经可以很好的解决蒙特卡罗方法需要的任意概率分布的样本集的问题。但是M H采样有两个缺点:一是需要计算接受率,在高维时计算量大。并且由于接受率的原因导致算法收敛时间变长。二是有些高维数据,特征的条件概率分布好求,但是特征的联合分布不好求。因此需要一个好的方法来改进M H采样,这就是我们下面讲到的Gibbs采样。 . 重新寻找合适的细致平稳条件 . 二维Gibbs采样 用下图 ...
2018-08-15 22:52 0 2574 推荐指数:
(学习这部分内容大约需要50分钟) 摘要 Gibbs采样是一种马尔科夫连蒙特卡洛(Markov Chain Monte Carlo, MCMC)算法, 其中每个随机变量从给定剩余变量的条件分布迭代地重新采样. 它是在概率模型中执行后验推理的简单且常用的高效方法. 预备知识 学习Gibbs ...
gibbs采样 关键字一 关键字二 参数估计与预测 机器学习的一般思路为: 1.从问题的本质中构建模型,定义样本的产生,有联合概率(图模型)。 2.进行模型参数的估计:MLE、MAP、Bayes。 3.使用模型对新 ...
MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样 在MCMC(三)MCMC采样和M-H采样中,我们讲到了M-H采样已经可以很好的解决蒙特卡罗方法需要的任意概率分布的样本集的问题 ...
目录 MCMC(一)蒙特卡罗方法 https://www.cnblogs.com/emanlee/p/12356492.htmlMCMC(二)马尔科夫链 https://www.cnblogs.com/emanlee/p/12357341.htmlMCMC(三)MCMC采样和M-H采样 ...
如果我们要求$f(x)$的积分,可化成, \[\int {\frac{{f(x)}}{{p(x)}}p(x)dx} \] $p(x)$是x的概率分布,假设${g(x) = \frac{{f(x)} ...
为什么要用吉布斯采样 什么是sampling? sampling就是以一定的概率分布,看发生什么事件。举一个例子。甲只能E:吃饭、学习、打球,时间T:上午、下午、晚上,天气W:晴朗、刮风、下雨。现在要一个sample,这个sample可以是:打球+下午+晴朗。 吉布斯采样的通俗解释 ...
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅。其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到P ...
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第二篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA ...