原文:线性回归(Linear Regression)和最小二乘法(ordinary least squares)

下面是对Andrew Ng的CS 机器学习课程讲义note 做的一部分笔记,按照自己的理解,对note 进行部分翻译,英文水平和知识水平不够,很多认识都不够深刻或者正确,请大家不吝赐教 一 基本知识 作为 input variables 在这个例子中是living area ,也叫做input features 输入特征 ,作为 output 或者target variables,我们将用来预测 ...

2018-07-13 20:15 1 872 推荐指数:

查看详情

机器学习---最小二线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)

在之前的文章《机器学习---线性回归(Machine Learning Linear Regression)》中说到,使用最小二回归模型需要满足一些假设条件。但是这些假设条件却往往是人们容易忽略的地方。如果不考虑模型的适用情况,就只会得到错误的模型。下面来看一下,使用最小二回归模型需要满足 ...

Tue Feb 12 05:40:00 CST 2019 0 2686
最小二乘法least squares method)

一.背景 5月9号到北大去听hulu的讲座《推荐系统和计算广告在视频行业应用》,想到能见到传说中的项亮大神,特地拿了本《推荐系统实践》求签名。讲座开始,主讲人先问了下哪些同学有机器学习的背景,我恬不知耻的毅然举手,真是惭愧。后来主讲人在讲座中提到了最小二乘法,说这个是机器学习最基础的算法 ...

Wed Aug 31 21:09:00 CST 2016 0 4244
最小二乘法(Least Squares)

  最小二乘法(Least Squares)在计算机中是一种用来求参数/最优化的方法(线性/非线性),wikipedia有较为详细的解释:http://en.wikipedia.org/wiki/Least_squares。   1)问题陈述:     The objective ...

Tue Oct 28 17:29:00 CST 2014 0 6691
【ML-2】最小二乘法(least squares)介绍

目录 最小二乘法的原理与要解决的问题 最小二乘法的代数法解法 最小二乘法的矩阵法解法 最小二乘法的局限性和适用场景 常见问题 最小二乘法是用来做函数拟合或者求函数极值的方法。在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知 ...

Mon Feb 24 05:23:00 CST 2020 0 670
线性回归——最小二乘法_实例(一)

上篇文章介绍了最小二乘法的理论与证明、计算过程,这里给出两个最小二乘法的计算程序代码; #Octave代码 clear all;close all; % 拟合的数据集 x = [2;6;9;13]; y = [4;8;12;21]; % 数据长度 N = length(x); % 3 %% 计算x ...

Sat Sep 24 23:51:00 CST 2016 0 2610
线性回归最小二乘法实现

目录 一、线性回归 二、最小二乘法 三、最小二乘法(向量表示) 四、Python实现 一、线性回归   给定由n个属性描述的样本x=(x0, x1, x2, ... , xn),线性模型尝试学习一个合适的样本属性的线性组合来进行预测任务,如:f(x ...

Mon Jan 11 02:54:00 CST 2021 0 327
线性回归(最小二乘法)

线性回归:是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 梯度下降,http://www.cnblogs.com/hgl0417/p/5893930.html 最小二乘: 对于一般训练集 ...

Fri Dec 30 17:27:00 CST 2016 0 2307
线性回归最小二乘法

线性回归最小二乘法 1.最小二乘法的原理 最小二乘法的主要思想是通过确定未知参数\(\theta\)(通常是一个参数矩阵),来使得真实值和预测值的误差(也称残差)平方和最小,其计算公式为\(E=\sum_{i=0}^ne_i^2=\sum_{i=1}^n(y_i-\hat{y_i ...

Fri Nov 08 06:59:00 CST 2019 0 498
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM