由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为14×14">14×1414×14,过滤器大小为5
 ...
PointNet 是在PointNet上做出了改进,考虑了点云局部特征提取,从而更好地进行点云分类和分割。 先简要说一下PointNet: PointNet,其本质就是一种网络结构,按一定的规则输入点云数据,经过一层层地计算,得出分类结果或者分割结果。其中比较特殊的地方在于两个转换矩阵 input transform amp feature transform 的存在,根据文中所说,这两个转换矩 ...
2018-03-22 18:05 0 4242 推荐指数:
由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为14×14">14×1414×14,过滤器大小为5
 ...
作者:szx_spark 由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为\(14\times 14\),过滤器大小为\(5\times 5\),二者 ...
PointNet的缺点: PointNet不捕获由度量空间点引起的局部结构,限制了它识别细粒度图案和泛化到复杂场景的能力。 利用度量空间距离,我们的网络能够通过增加上下文尺度来学习局部特征。 点集通常采用不同的密度进行采样,这导致在统一密度下训练的网络的性能大大降低 ...
简介作者在先前的研究中提出了Pointnet,此论文是Pointnet的改进版Pointnet++。提出改进的理由是因为Pointnet无法很好地捕捉由度量空间引起的局部结构问题,由此限制了网络对精细场景的识别以及对复杂场景的泛化能力。Pointnet的基本思想是对输入点云中的每一个点学习其对应 ...
PointNet架构 PointNet主要架构如下图所示: 主要包含了点云对齐/转换、mpl学习、最大池化得到全局特征三个主要的部分。 -T-Net用于将不同旋转平移的原始点云和点云特征进行规范化; mpl是多层感知机,n个共享的mpl用于处理n个点/特征; max ...
PointNet1 是斯坦福大学研究人员提出的一个点云处理网络,与先前工作的不同在于这一网络可以直接输入无序点云进行处理,而无序将数据处理成规则的3Dvoxel形式进行处理。输入点云顺序对于网络的输出结果没有影响,同时也可以处理旋转平移后的点云数据。 点云是一种重要的几何数据形式 ...
一篇讲原理很好的博文 https://www.cnblogs.com/Libo-Master/p/9759130.html ...
简介 这是在阅读完Ruizhongtai Qi的博士论文《DEEP LEARNING ON POINT CLOUDS FOR 3D SCENE UNDERSTANDING》后的一篇读书笔记。这篇论文的整体框架如下图所示,其中涉及的几项工作在点云处理领域都是非常有影响力的。 3D场景有很多表 ...