假设已知先验概率P(ωj),也知道类条件概率密度p(x|ωj),且j=1,2.那么,处于类别ωj,并具有特征值x的模式的联合概率密度可写成两种形式: p(ωj,x) = P(ωj|x)p(x) = p(x|ωj)P(ωj) 整理后得出贝叶斯公式(只有两种类型的情况下) 下面分别介绍一下后 ...
贝叶斯公式由英国数学家贝叶斯 Thomas Bayes 发展,用来描述两个条件概率之间的关系。贝叶斯原本是个神父,他为了证明上帝的存在而发明了著名的贝叶斯公式。然而他本人并不知道他所发明的公式及其背后的思想对当今社会产生重大变革,最典型的的莫过于当今炙手可热的 人工智能 时代下,是人工智能的分支:机器学习,所必备的方法之一。 上图就是著名的贝叶斯公式,估计很多人和笔者一样看到数学公式就头疼,我们 ...
2018-03-28 19:23 0 1901 推荐指数:
假设已知先验概率P(ωj),也知道类条件概率密度p(x|ωj),且j=1,2.那么,处于类别ωj,并具有特征值x的模式的联合概率密度可写成两种形式: p(ωj,x) = P(ωj|x)p(x) = p(x|ωj)P(ωj) 整理后得出贝叶斯公式(只有两种类型的情况下) 下面分别介绍一下后 ...
贝叶斯公式的理解 一、总结 一句话总结: 我们把上面例题中的 A 变成样本(sample) x , 把 B 变成参数(parameter) \theta , 我们便得到我们的贝叶斯公式: $$\pi(\theta_i|x) = \frac{f(x|\theta_i)\pi(\theta_i ...
基本概念 样本空间:{试验所有可能结果}-->一个试验所有可能结果的集合,用 Ω 表示。所以P(Ω) = 1 事件:样本空间的一个子集。用A、B、C表示。 条件概率 其实P(A|B ...
全概率公式和贝叶斯公式 一、总结 一句话总结: 全概率就是表示达到某个目的,有多种方式(或者造成某种结果,有多种原因),问达到目的的概率是多少(造成这种结果的概率是多少) 贝叶斯公式就是当已知结果,问导致这个结果的第i原因的可能性是多少?执果索因! 1、条件概率 意义及意义例子 ...
【监狱风云】法外狂徒小崔又偷又抢,只为帮你搞懂全概率和贝叶斯公式_哔哩哔哩_bilibili 注解: 1.全概率公式说的是:我从3个人兜里面偷钱,我偷到真钱的概率是多少?是告诉你已知 ...
一、条件概率公式 举个例子,比如让你背对着一个人,让你猜猜背后这个人是女孩的概率是多少? 直接猜测,肯定是只有50%的概率,假如现在告诉你背后这个人是个长头发,那么女的概率就变为90%。 所以条件概率的意义就是,当给定条件发生变化后,会导致事件发生的可能性发生变化。 条件概率由文氏 ...
全概率公式 设 $B_{1},B_{2},...,B_{n}$ 是一个完备事件组且都有正概率,则对任一个事件 $A$ 有 $$P(A) = \sum_{i=1}^{n}P(AB_{i}) = \sum_{i=1}^{n}P(B_{i})P(A|B_{i})$$ 将复杂的事件划分为简单 ...
贝叶斯公式是怎么来的? 我们还是使用 wikipedia 上的一个例子: 一所学校里面有 60% 的男生,40% 的女生。男生总是穿长裤,女生则一半穿长裤一半穿裙子。有了这些信息之后我们可以容易地计算“随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大”,这个就是前面说的“正向 ...