均值:描述的是样本集合的中间点。 方差:描述的是样本集合的各个样本点到均值的距离之平均,一般是用来描述一维数据的。 协方差: 是一种用来度量两个随机变量关系的统计量。 只能处理二维问题。 计算协方差需要计算均值。 如下式: 方差与协方差的关系 ...
本文部分内容转自 https: www.cnblogs.com chaosimple p .html 一 统计学概念 二 为什么需要协方差 三 协方差矩阵 注:上述协方差矩阵还需要除以除以 n 。MATLAB使用cov函数计算协方差时自动除以了 n ,opencv使用calcCovarMatrix函数计算后还需要手动除以 n 协方差具体计算 以学生成绩举例:有 名学生,参加数学 英语 美术考试, ...
2017-12-25 13:26 0 9138 推荐指数:
均值:描述的是样本集合的中间点。 方差:描述的是样本集合的各个样本点到均值的距离之平均,一般是用来描述一维数据的。 协方差: 是一种用来度量两个随机变量关系的统计量。 只能处理二维问题。 计算协方差需要计算均值。 如下式: 方差与协方差的关系 ...
均值:描述的是样本集合的中间点。 方差:描述的是样本集合的各个样本点到均值的距离之平均,一般是用来描述一维数据的。 协方差: 是一种用来度量两个随机变量关系的统计量。 只能处理二维问题。 计算协方差需要计算均值。 如下式: 方差与协方差的关系 ...
Obvious,最小特征值对应的特征向量为平面的法向 这个问题还有个关键是通过python求协方差矩阵的特征值和特征向量,np.linalg.eig()方法直接返回了特征值的向量和特征向量的矩阵 scipy.linalg.eigh()方法可以对返回的特征值和特征向量进行控制,通过eigvals ...
PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) 假如你要处理一个数据集, 数据集中的每条记录都是一个$d$维列向量. 但是这个$d$太大 ...
矩阵的特征值和特征向量 定义 对于\(n\)阶方阵\(A\),若存在非零列向量\(x\)和数\(\lambda\)满足\(Ax=\lambda x\),则称\(\lambda\)和\(x\)为一组对应的特征值和特征向量 在确定了特征值之后,可以得到对应\(x\)的无穷多个解 求解特征值 ...
特征向量是一个向量,当在它上面应用线性变换时其方向保持不变。考虑下面的图像,其中三个向量都被展示出来。绿色正方形仅说明施加到这三个向量上的线性变换。 在这种情况下变换仅仅是水平方向乘以因子2和垂直方向乘以因子0.5,使得变换矩阵A定义 ...
特征向量与特征值 我们考虑任何一个线性变换都可以等同于乘上一个矩阵。 但是乘上一个矩阵的复杂度是 \(O(n^2)\) 的,所以我们需要考虑更优秀的做法。 考虑线性变换的矩阵 \(A\) 和一个列向量 \(\alpha\) 。 \[A\alpha=\lambda\alpha ...
一 定义 假设矩阵A为n*n方阵,x为n*1向量,则y=Ax表示矩阵A对向量x的线性变换结果,由于A为n*n方阵,则y为n*1向量。对大多数x进行线性变换,得到向量y与原向量x一般都不共线,只有少数向量x满足 ,其中 被称为矩阵A的特征值,x 被称为矩阵A的特征向量 ...