目录 RNN 为什么会出现RNN RNN模型架构 多输入单输出 单输入多输出 多输入多输出 梯度消失和梯度爆炸 LSTM 为什么会出现LSTM呢? LSTM模型结构 ...
摘自:http: www.voidcn.com article p ntafyhkn zc.html 二 LSTM模型 .长短期记忆模型 long short term memory 是一种特殊的RNN模型,是为了解决RNN模型梯度弥散的问题而提出的 在传统的RNN中,训练算法使用的是BPTT,当时间比较长时,需要回传的残差会指数下降,导致网络权重更新缓慢,无法体现出RNN的长期记忆的效果,因此需 ...
2017-10-23 09:47 0 1768 推荐指数:
目录 RNN 为什么会出现RNN RNN模型架构 多输入单输出 单输入多输出 多输入多输出 梯度消失和梯度爆炸 LSTM 为什么会出现LSTM呢? LSTM模型结构 ...
摘自:https://zybuluo.com/hanbingtao/note/581764 写得非常好 见原文 长短时记忆网络的思路比较简单。原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非 ...
说到自然语言,我就会想到朴素贝叶斯,贝叶斯核心就是条件概率,而且大多数自然语言处理的思想也就是条件概率。 所以我用预测一个句子出现的概率为例,阐述一下自然语言处理的思想。 统计语言模型-概率 句子,就是单词的序列,句子出现的概率就是这个序列出现的概率 可以想象上面这个式子计算量 ...
来源:https://github.com/jiangxinyang227/NLP-Project/text_classifier base.py ...
1. 语言模型 2. RNN LSTM语言模型 (梯度权重) (1)one to one : 图像分类 (2)one to many:图片描述 (3)many to one:文本情感分析、分类 (4)many to many(N ...
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 ...
序列数据的处理,从语言模型 N-gram 模型说起,然后着重谈谈 RNN,并通过 RNN 的变种 LSTM 和 GRU 来实战文本分类。 语言模型 N-gram 模型 一般自然语言处理的传统方法是将句子处理为一个词袋模型(Bag-of-Words,BoW),而不考虑每个词的顺序,比如用朴素贝叶 ...
基于LSTM语言模型的文本生成 目录 基于LSTM语言模型的文本生成 1. 文本生成 1.1 基于语言模型的文本生成 1.2 使用深度学习方法的文本生成 1.3 Sampling问题 ...