前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结。里面对线程回归的正则化也做了一个初步的介绍。提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归。但是对于Lasso回归的解法没有提及,本文是对该文的补充和扩展。以下都用矩阵法表示,如果对于矩阵 ...
引用:http: www.cnblogs.com pinard p .html 最近在学习机器学习的相关框架,看到最小角回归理解了一下: 在介绍最小角回归算法前,我们需要了解两个相关算法,一个是前向选择算法 Foward Selection ,一个是前向梯度算法 Forward Statgewise 。 .前向选择算法 Foward Selection 假设有Y X ,X为m n的矩阵,Y为m 的 ...
2017-09-16 20:44 0 4001 推荐指数:
前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结。里面对线程回归的正则化也做了一个初步的介绍。提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归。但是对于Lasso回归的解法没有提及,本文是对该文的补充和扩展。以下都用矩阵法表示,如果对于矩阵 ...
方法在这里。 先讲一下今天看到的新方法,所谓的LARS(Least Angle Regression ...
目录 线性回归——最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean square error (mse) 计算损失(cost ...
前文:Lasso linear model实例 | Proliferation index | 评估单细胞的增殖指数 参考:LASSO回歸在生物醫學資料中的簡單實例 - 生信技能树 Linear least squares, Lasso,ridge regression有何本质区别? 你应该 ...
普通最小二乘法 理论: 损失函数: 权重计算: 1、对于普通最小二乘的系数估计问题,其依赖于模型各项的相互独立性。 2、当各项是相关的,且设计矩阵 X的各列近似线性相关,那么,设计矩阵会趋向于奇异矩阵,这会导致最小二乘估计对于随机误差非常敏感,产生很大的方差 ...
代码实现: 结果: 总结:各回归算法在相同的测试数据中表现差距很多,且算法内的配置参数调整对自身算法的效果影响也是巨大的, 因此合理挑选合适的算法和配置合适的配置参数是使用算法的关键! ...
一、岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ。 二、如何调用 alpha:就是上述正则化参数λ;fit_intercept:默认 ...
下面是对Andrew Ng的CS229机器学习课程讲义note1做的一部分笔记,按照自己的理解,对note1进行部分翻译,英文水平和知识水平不够,很多认识都不够深刻或者正确,请大家不吝赐教! 一、基 ...