原文:增量式强化学习

线性逼近: 相比较于非线性逼近,线性逼近的好处是只有一个最优值,因此可以收敛到全局最优。其中为状态s处的特征函数,或者称为基函数。 常用的基函数的类型为: 增量式方法参数更新过程随机性比较大,尽管计算简单,但样本数据的利用效率并不高。而批的方法,尽管计算复杂,但计算效率高。 批处理方法: 深度强化学习: Q learning方法是异策略时序差分方法。其伪代码为: 离策略:是指行动策略 产生数据的策 ...

2017-08-26 12:22 0 1486 推荐指数:

查看详情

强化学习总结

强化学习总结 强化学习的故事 强化学习学习一个最优策略(policy),可以让本体(agent)在特定环境(environment)中,根据当前的状态(state),做出行动(action),从而获得最大回报(G or return)。 有限马尔卡夫决策过程 马尔卡夫决策过程理论 ...

Fri Mar 31 07:34:00 CST 2017 6 17833
强化学习——入门

强化学习强化学习作为一门灵感来源于心理学中的行为主义理论的学科,其内容涉及 概率论、统计学、逼近论、凸分析、计算复杂性理论、运筹学 等多学科知识,难度之大,门槛之高,导致其发展速度特别缓慢。 一种解释: 人的一生其实都是不断在强化学习,当你有个动作(action)在某个状态 ...

Thu Sep 12 19:37:00 CST 2019 1 467
强化学习(MATLAB)

1. 定义 机器学习算法可以分为3种:有监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning)。强化学习(Reinforcement Learning, RL),又称再励学习、评价学习 ...

Wed Mar 25 00:51:00 CST 2020 1 9767
什么是强化学习

Reinforcement learning 是机器学习里面的一个分支,特别善於控制一只能够在某个环境下 自主行动 的个体 (autonomous agent),透过和 环境 之间的互动,例如 sensory perception 和 rewards,而不断改进它的 行为 。 听到强化学习 ...

Mon May 18 03:36:00 CST 2015 1 11166
强化学习杂谈

强化学习从入门到放弃 目录 强化学习从入门到放弃 杂谈 MDP MP MRP Bellman Equation MDP ...

Fri Jan 03 05:37:00 CST 2020 0 233
强化学习之CartPole

0x00 任务   通过强化学习算法完成倒立摆任务,控制倒立摆在一定范围内摆动。 0x01 设置jupyter登录密码 jupyter notebook --generate-config jupyter notebook password (会输入两次密码,用来验证 ...

Tue Jun 15 01:04:00 CST 2021 0 266
强化学习

机器学习分类: 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益 强化学习基础概念:Agent :主体,与环境交互的对象,动作的行使者Environment : 环境, 通常被规范为马尔科夫决策过程(MDP)State : 环境状态的集合Action ...

Wed Apr 18 06:20:00 CST 2018 0 924
什么是强化学习

摘要:本文尝试以一种通俗易懂的形式对强化学习进行说明,将不会包含一个公式。 本文分享自华为云社区《强化学习浅述》,作者: yanghuaili 人。 机器学习可以大致分为三个研究领域:监督学习,无监督学习强化学习(Reinforcement Learning,RL)。监督学习是大家最为 ...

Tue Aug 17 18:31:00 CST 2021 0 105
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM