一、粒子群算法的概念 粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。 二、粒子群算法分析 1、基本思想 粒子群 ...
.理论基础 粒子群算法 particle swarm optimization,PSO 是计算智能领域中的一种生物启发式方法,属于群体智能优化算法的一种,常见的群体智能优化算法主要有如下几类: 蚁群算法 Ant Colony Optimization,简称ACO 年提出 粒子群优化算法 Particle Swarm Optimization,简称PSO 年提出 简单易于实现,也是目前应用最为广泛 ...
2017-08-22 22:58 1 6834 推荐指数:
一、粒子群算法的概念 粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。 二、粒子群算法分析 1、基本思想 粒子群 ...
代码已经发布到了github:https://github.com/roadwide/AI-Homework 如果帮到你了,希望给个star鼓励一下 1 遗传算法 1.1算法介绍 遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学 ...
01 算法起源 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群 ...
粒子群算法最先从观察鸟的捕食行为出发得到的仿生算法,它的原始算法用于求解无约束的多变量优化问题,如二元函数在给定区域内的极值问题,后来被扩展到求解TSP问题,动态优化问题和多目标优化问题。 粒子群算法的基本思想如下。一只鸟出去捕食,它当然是希望找到食物最多的位置。假设这只 ...
同进化算法(见博客《[Evolutionary Algorithm] 进化算法简介》,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简称NN,神经网络是从信息处理角度对人脑的神经元网络系统进行了模拟的相关算法)一样,群体智能优化算法也属于 ...
粒子群优化算法 1. 背景知识 1995年美国社会心理学家Kennedy和电气工程师Eberhart共同提出粒子群优化算法(Particle Swarm Optimization, PSO)。PSO算法的基本思想利用生物学家Heppner的生物群体模型,模拟鸟类觅食过程。鸟类飞行过程相互 ...
粒子群算法 粒子群算法是在1995年由Eberhart博士和Kennedy博士一起提出的,它源于对鸟群捕食行为的研究。它的基本核心是利用群体中的个体对信息的共享从而使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的最优解。设想这么一个场景:一群鸟进行觅食,而远处有一片玉米 ...
...